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PREFACE

This book is decicated to CUHK students studying ESSC and related subjects.
The major aim of this book is to provide the mathematical foundation that many
courses require. Worked examples are given to help students understand the meth-
ods used. Problems are attached at the end of each chapter to further assist stu-
dents in getting familiar with the concepts. I am very grateful that Prof. Man-nin
Chan and Dr. Andie Au-yeung for giving me the opportunity to write this book.
Without their help, this book would never be created.

Benjamin Loi
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1.1 INTRODUCTION

Algebra is one of the most fundamental mathematical tool used in Science. We
would introduce some rules about algebraic operations, then look at some prob-
lems related to basic algebra.

Addition, Subtraction, Multiplication and Division Addition, Subtraction,
Multiplication and Division are the most basic operations in the world of mathe-
matics. Subtraction can be viewed as addition with a minus sign, division can be
viewed as multiplication by interchanging the numerator and denominator.

Here are some important rules about these four operations:

a+b = b+a Commutative Property of Addition
−a = (−1)a

(a+b)+ c = a+(b+ c) Associative Property of Addition

ab = ba Commutative Property of Multiplication
a(b+ c) = ab+ac Distributive Property of Multiplication
a(b− c) = ab−ac
(a+b)c = ac+bc
(a−b)c = ac−bc

(ab)c = a(bc) Associative Property of Multiplication

Equation Left-hand side and right-hand side of an equation are equal. If we
do an operation on both side, they are still equal. Hence we can use this to our
advantage and simplify equation by doing appropriate operations.

Example 1.1.1 Solve the following equation.

3x+8
2

=
4x−5

3

3x+8 = 2
(

4x−5
3

)
3(3x+8) = 2(4x−5)

9x+24 = 8x−10
9x−8x =−10−24

x =−34
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Example 1.1.2 Expand (x+2)(2x+5).

(x+2)(2x+5) = x(2x+5)+2(2x+5)

= (2x2 +5x)+(4x+10)

= 2x2 +9x+10

Example 1.1.3 Make y as the subject for

x(y+3) =
y
x
+4

x2(y+3) = y+4x

x2y+3x2 = y+4x

x2y− y = 4x−3x2

y(x2−1) = 4x−3x2

y =
4x−3x2

x2−1

Exponential and Logarithmic Functions Exponential function gives the value
of base to the power of the index. While logarithmic function is the inverse oper-
ation of exponential function and retrieve the index with a given base. Example
of such pairs are

102 = 100↔ log10(100) = 2
√

9 = 9
1
2 = 3↔ log9(3) =

1
2

e3 ≈ 20.086↔ loge(e
3) = ln(e3) = 3

where e≈ 2.718.

Here are some rules about exponentiation and logarithm:

a−b =
1
ab

ab+c = abac

ab−c =
ab

ac

(ab)c = a(bc)

(ab)c = acbc

6
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and

log(ab) = loga+ logb

log
(a

b

)
= loga− logb

log(ab) = b loga

logb a =
logc a
logc b

It is worth noting that exponentiation with a positive base always results in posi-
tive value, also we have a0 = 1 and loga 1 = 0.

Example 1.1.4 Simplify the following expressions.

ln(xy2e−3) = lnx+ lny2 + lne−3

= lnx+2lny−3lne
= lnx+2lny−3

(e4)b

(e5)lnc =
e4b

e5lnc

=
e4b

eln(c5)

=
e4b

c5

Trigonometric Functions The simplest trigonometric functions are sine, cosine
and tangent. Related trigonometric functions are cosecant, secant and cotangent.

Trigonometric Ratios shown by a right-angled triangle.

7
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Below are some trigonometric identities.

tanθ =
sinθ

cosθ

cscθ =
1

sinθ

secθ =
1

cosθ

cotθ =
1

tanθ
= tan(

π

2
−θ)

sin(−θ) =−sinθ

cos(−θ) = cosθ

tan(−θ) =− tanθ

sin2
θ + cos2

θ = 1

tan2
θ +1 = sec2

θ

1+ cot2 θ = csc2
θ

sin2θ = 2sinθ cosθ

cos2θ = cos2
θ − sin2

θ

= 2cos2
θ −1

= 1−2sin2
θ

tan2θ =
2tanθ

1− tan2 θ

For a more detailed table of trigonometric identities that include sum-to-product
and product-to-sum identities, the readers are referred to this link.

Example 1.1.5 Given that tanθ = 4
3 , without computing θ , find the value ofAlternative: Draw

a triangle like
the diagram in
the previous page
and set y = 4 and
x = 3.

sinθ .

cotθ =
1

tanθ
=

3
4

csc2
θ = 1+ cot2 θ

cscθ =

√
1+

3
4

2
=

√
25
16

=
5
4

sinθ =
1

cscθ
=

4
5

8
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Factor Theorem A polynomial p(x) has (x− a) as a factor if and only if p(a)
equals to zero.

Example 1.1.6 Factorize p(x) = 2x2 + x−15.

Notice that p(−3) = 0, then p(x) must have (x− 3) as a factor by factor theo- Strategy: Test
p(a) = 0 for any a
that is a factor of
the constant term.
In this case, -3 is
a factor of -15.

rem. Therefore, p(x) = (x−3)(ax−b) for some a,b. Expanding (x−3)(ax−b)
gives

ax2− (3a+b)x+3b

By comparing the coefficients we have a = 2,b =−5. Thus,

p(x) = (x−3)(2x+5)

The equation p(x) = (x− 3)(2x+ 5) = 0 has the solution of x = 3 or −5
2 from

finding the values of x which cause the factor to become zero.

Quadratic Equation A quadratic equation is in the form of ax2 + bx+ c = 0.
The roots are given by the following expression:

x =
−b±

√
b2−4ac

2a

Example 1.1.7 Solve x2−3x+2 = 0.

From the above expression, we have Alternative: Fac-
torize the left
hand side and
find the roots like
Example 1.1.6.

x =
−(−3)±

√
(−3)2−4(1)(2)
2(1)

=
3
2
± 1

2
= 1 or 2

Complex Number The idea of complex number comes from the solution of
quadratic equation when the value inside the square root is negative. We denote it
with the symbol ı which is essentially

√
−1. As a result, ı2 =−1. For any positive

number a,
√
−a2 =

√
a2
√
−1 = aı. Evaluation of complex numbers is similar to

its real number counterpart.
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Example 1.1.8 Evaluate the following expression.
(a) (3+4ı)(2−3ı), and (b) 1+ı

1−ı .

(3+4ı)(2−3ı) = 3(2−3ı)+4ı(2−3ı)

= (6−9ı)+(8ı−12ı2)
= (6−9ı)+(8ı+12)
= 18− ı

1+ ı
1− ı

=
(1+ ı)(1+ ı)
(1− ı)(1+ ı)

=
1+ ı+ ı− ı2

1+ ı− ı− ı2

=
2ı
2

= ı

Example 1.1.9 Solve x2 +2x+3 = 0.

x =
−(2)±

√
(2)2−4(1)(3)
2(1)

=−1±
√
−8
2

=−1±
√

8ı
2

=−1± 2
√

2ı
2

=−1±
√

2ı

Arithmetic Sum and Geometric Sum Arithmetic sum is the sum of terms that
are differed by a fixed constant, while geometric sum is the sum of terms that are
differed by a multiplicative factor. The formula for arithmetic sum with n terms is

a+(a+d)+(a+2d)+ ...+(a+(n−1)d) =
(a+(a+(n−1)d))n

2

While the formula for geometric sum with n terms is

a+ ca+ c2a+ ...+ cn−1a =
a(1− cn)

1− c

10
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A special case that is worth mentioning is that when n goes to infinity, under the
condition −1 < c < 1, the geometric sum formula is reduced to

a+ ca+ c2a+ ...=
a

1− c

Example 1.1.10 Find the value of 1.25−1+0.8−0.64+ ....
We identify it as a infinite geometric sequence with a = 1.25 and c =−0.8, plug-
ging the values into the formula, we have

1.25+1+0.8+0.64+ ...=
1.25

1− (−0.8)
= 0.6944

Unit Conversion When we tackle physical problems, often we need to take
care of the units. Addition and Subtraction can only be carried out when involved
quantities have the same units. Sometimes in the multiplication between fractions,
it is desired to convert the units such that some can be cancelled out.

Example 1.1.11 Express 42.195km in m.

Notice that 1km = 1000m. Therefore,

42.195km = (42.195km)(
1000m
1km

) = 42195m

Example 1.1.12 Find the conversion factor between ms−1 and km/h.

1ms−1 = (1ms−1)(
1km

1000m
)(

3600s
1h

) = 3.6km/h

Proportionality A variable y is proportional to another variable x if y = kx
where k is a constant. This is denotes as y ∝ x. x here can be substituted by
other expressions, like y ∝ x2, or y ∝ lnx. When the expression at the right hand
side increases, the variable at the left hand side increases to the same extent.

Example 1.1.13 (a) If y ∝ x3, and x doubles, find the increase in y. (b) If y ∝
1
x

and x halves, find the change in y.

11
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(a) y ∝ x3 implies that y
x3 = k for a fixed k. Hence we have

yn

x3
n
=

y0

x3
0
= k

yn

y0
=

x3
n

x3
0

=

(
xn

x0

)3

= 23 = 8

Hence the new value of y is 8 times of the original.

(b) Similar to (a), we have

xnyn = x0y0
yn

y0
=

x0

xn

=
1(
xn
x0

)
=

1(1
2

)
= 2

Thus the new value of y is 2 times of the original.
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1.2 BASIC ALGEBRA IN ESSC2020

1.2.1 ENERGY BALANCE

Example 1.2.1 The average surface temperature of the Earth is about 15 ◦C.
Calculate the average outgoing radiative flux at Earth’s surface.

Radiation from a surface follows Stefen-Boltzmann Law, which states that

E = σT 4

where σ = 5.67×10−8 Wm−2 K−4 and T is the temperature in Kelvin. This form
is valid when the object considered is a perfect blackbody.

Therefore the average outgoing radiative flux is Common mistake:
Temperature not
changed to Kelvin
when applying
Stefen-Boltzmann
Law.

(5.67×10−8 Wm−2 K−4)(288.15K)4 = 390.9Wm−2

Example 1.2.2 Estimate the amount of energy released per second by the Sun,
given that the surface temperature and radius of the Sun are about 5780 K and
7×105 km respectively.

By Stefen-Boltzmann Law, radiative flux at the Sun’s surface is

(5.67×10−8 Wm−2 K−4)(5780K)4 = 6.3284×107 Wm−2

Rate of energy release is calculated as radiative flux times surface area of the Sun,
which is Common mistake:

Radius of Sun not
converted to meter
in calculation.

(6.3284×107 Wm−2)(4π(7×108 m)2) = 3.897×1026 W

This value is also called the luminosity of the Sun.

Example 1.2.3 Estimate the solar radiative flux at the proximity of the Earth,
given that the distance between the Sun and Earth is 1.5×108 km.

The energy released by the Sun spreads out radially and uniformly. By conser-
vation of energy, the solar flux density is its luminosity divided by the surface
area of the imaginary sphere having a radius of Earth-Sun distance:

3.897×1026 W
4π(1.5×1011 m)2

= 1378Wm−2

13
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The actual amount of solar flux at the Earth is roughly equal to what we have cal-
culated in the above example. It is called the Solar constant, denoted as S0, and
has a value of about 1370 Wm−2.

Figure showing the relation between Earth-Sun distance and Solar constant.

Since the cross-sectional area of the Earth is only πR2
Earth but the total area of

the Earth’s surface is 4πR2
Earth, the average incoming solar flux into the Earth’s

surface is

S0πR2
Earth

4πR2
Earth

=
S0

4
= 342.5Wm−2

Incoming solar flux, Earth’s Shadow area and Surface area.
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Example 1.2.4 Deep ocean has an albedo of about 0.06. Estimate the total
amount of shortwave radiation absorbed by ocean water per unit area in one year.

The expression of radiation absorbed by a surface is

S0

4
(1−α)

where α is the albedo, the fraction of radiation reflected away.

With S0 = 1370W/m2 and α = 0.06, the amount of radiation absorbed in one
year is

1370Wm−2

4
(1−0.06)(1yr) = (342.5Js−1 m−2)(0.94)(86400×365.25 s)

= 1.016×1010 Jm−2

Example 1.2.5 Find the would-be average temperature of Earth’s surface if the
greenhouse effect is not included.

At Earth’s surface, the amount of radiation absorbed must balance the amount
of radiation emitted on average such that the surface does not heat up or cool
down in the long term. Thus we have

Eabs = Eemit

S0

4
(1−αp) = σT 4

e

where αp ≈ 0.3 is the planetary albedo, the albedo for the Earth’s surface as a
whole. While Te is the emission temperature, the temperature at which the total
amount of radiation released by the Earth is equal to that would be emitted ac-
cording to Stefen-Boltzmann Law.

Diagram of fluxes if there is no Greenhouse Effect.
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Further rearrangement gives

T 4
e =

S0

4σ
(1−αp)

Te =

[
S0

4σ
(1−αp)

] 1
4

=

[(
1370Wm−2

4σ

)
(1−0.3)

] 1
4

=

[(
342.5Wm−2

5.67×10−8 Wm−2 K−4

)
(0.7)

] 1
4

= 255K

In this case, the Earth’s surface temperature is the same as the emission tempera-
ture, i.e. Ts = 255K.

Example 1.2.6 Find the would-be average temperature of Earth’s surface if the
greenhouse effect is modelled by assuming the atmosphere is a homogeneous,
perfectly absorbing medium for long-wave radiation.

We consider the energy balance for the atmosphere. Long-wave radiation from
the Earth’s surface is absorbed by the atmosphere and given by σT 4

s . Meanwhile
radiation leaves the atmosphere by two pathways, one back to the Earth’s surface
and another to the space, since the atmosphere has two surfaces, outward and in-
ward. Both of them are σT 4

a where Ta is the atmosphere’s temperature. Therefore,
we have

Eabs = Eemit

σT 4
s = σT 4

a +σT 4
a = 2σT 4

a

Diagram showing fluxes for simple Greenhouse Effect.
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Notice that Ta = Te = 255K, the reason behind is that the only source of terrestrial
radiation emitted to the space comes from the atmosphere. Then we have

T 4
s = 2T 4

e

Ts = 2
1
4 Te

= 2
1
4 (255K)

= 303K

Example 1.2.7 Estimate the average temperature of Earth’s surface under green-
house effect in which the atmosphere absorbs only a fraction of long-wave radia-
tion from the ground.

In this case, we have to add a factor of ε in the expression of the amount of
long-wave radiation absorbed by the atmosphere, which then becomes

εσT 4
s

where ε is called absorptivity and quantifies the fraction of long-wave radiation
captured by greenhouse gases in the atmosphere.

We also want to modify Stefen-Boltzmann Law to better reflect the fact that the
atmosphere is not a perfect blackbody. Now the law has a new form of

E = εσT 4
a

where ε here denotes emissivity which is equal to the absorptivity in above con-
text due to Kirchhoff’s Law.

Now consider the energy balance for the atmosphere again, similar to Example
1.2.6, we have

εσT 4
s = 2εσT 4

a

Ts = 2
1
4 Ta

We should be careful that at this time Ta 6= Te. Thus, we need to consider the en-
ergy balance for the Earth’s surface as well. Absorption comes from two sources:
solar radiation and long-wave radiation emitted from the atmosphere. Meanwhile
the surface itself emits radiation according to Stefen-Boltzmann Law as well.

17
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Therefore,

Eabs = Eemit

S0

4
(1−αp)+ εσT 4

a = σT 4
s

Notice that S0
4 (1−αp) = σT 4

e just like example 1.2.5 if we consider the energy
balance for the Earth as a whole. Now we have

σT 4
e + εσT 4

a = σT 4
s

T 4
e + εT 4

a = T 4
s

Diagram showing fluxes for leaky Greenhouse Effect.

Substituting Ts = 2
1
4 Ta as we have concluded above, we have

T 4
e + εT 4

a = 2T 4
a

T 4
e = (2− ε)T 4

a

T 4
a =

(
1

2− ε

)
T 4

e

Ta =

(
1

2− ε

) 1
4

Te

Emissivity ε of Earth’s atmosphere has a typical value of 0.77. Substitution gives
Ta = 242K, which indicates that the atmosphere’s temperature is lower than the

18
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emission temperature. Again using the relation Ts = 2
1
4 Ta, we arrive at

Ta =

(
1

2− ε

) 1
4

Te

Ts = 2
1
4 Ta =

(
2

2− ε

) 1
4

Te

=

(
2

2−0.77

) 1
4

(255K)

= 288K

corresponding to an estimated surface temperature about 15 ◦C, which is realistic
when compared to observations.

Example 1.2.8 Estimate the value of emissivity of Mars’ atmosphere provided
that emission temperature and surface temperature of Mars are 211 K and 230 K.

From the expression we have just derived in Example 1.2.7, we have

Ts =

(
2

2− ε

) 1
4

Te(
Ts

Te

)4

=
2

2− ε

2− ε = 2
(

Te

Ts

)4

ε = 2

[
1−
(

Te

Ts

)4
]

Substituting the corresponding values, we have

ε = 2

[
1−
(

211K
230K

)4
]

= 0.583

Example 1.2.9 Using the multi-layer model, in which the atmosphere is consid-
ered to consisted of multiple absorbing sub-layers, then by considering the energy
balance at each sub-layer, starting from the top to bottom, we can conclude that

Ts = Te(N +1)
1
4

19
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where N is the amount of effective absorbing layers.

Using the expression S0
4 (1−αp) = σT 4

e in Example 1.2.5, it can be written as

Ts =

[
S0

4σ
(1−αp)(N +1)

] 1
4

Now estimate the number of effective absorbing layers in Earth’s atmosphere.

Rearrange the equation above and substituting Ta = 255K, Ts = 288K found in
previous examples, we have

N =

(
Ts

Te

)4

−1

=

(
288K
255K

)4

−1

= 0.627

Example 1.2.10 Venus has a very thick atmosphere. Given that the effective
absorbing layers of Venus’ atmosphere is around 125 and its emission temperature
is −45 ◦C. Estimate the surface temperature of Venus.Common mistake:

Temperature not
in Kelvin when
using the formula.

Ts = Te(N +1)
1
4

= (228.15K)(125+1)
1
4

= 764K

1.2.2 CLIMATE SENSITIVITY AND FEEDBACK

Example 1.2.11 Climate sensitivity ∆Ts is the predicted change in global surface
temperature under a given radiative forcing ∆Q. They are related by the climate
sensitivity parameter λ , by

∆Ts = λ∆Q

Show that the feedback effect can be included in the formula by

∆Ts,final =
∆Ts,init

1− f
=

λ∆Q
1− f

The initial temperature change is λ∆Q. At the first feedback loop, there is an ad-
ditional temperature change by f λ∆Q where f represents the factor of the feed-
back. For the subsequent feedback loops, the effects are f 2λ∆Q, f 3λ∆Q, and so

20



Handbook of Earth Science Chapter 1 - Basic Algebra

on, with each feedback loop having a magnitude of the last feedback loop times
f . If f < 1, then by geometric sum formula, we have

∆Ts,final = λ∆Q+ f λ∆Q+ f 2
λ∆Q+ ...

= λ∆Q(1+ f + f 2 + ...)

=
λ∆Q
1− f

Example 1.2.12 Find the resultant climate sensitivity considering only a partic-
ular feedback, if λ∆Q = 0.6Wm−2 and f =−0.2.

∆Ts =
(0.6Wm−2)λ

1− (−0.2)
= (0.5Wm−2)λ

Example 1.2.13 Estimate the feedback factor for the Earth system as a whole,
given that λ = 0.27◦C/(W/m2), ∆Q = 1.88Wm−2, the final temperature change
∆Ts,final = 0.76◦C.

The initial temperature change without feedback is

∆Ts,init = λ∆Q = (0.27◦C/(W/m2))(1.88Wm−2) = 0.508◦C

By the formula, we have

∆Ts,final =
∆Ts,init

1− f

0.76 =
0.508
1− f

f = 0.33

1.2.3 VERTICAL STRUCTURE OF PRESSURE AND DENSITY
IN THE ATMOSPHERE

Example 1.2.14 The atmospheric pressure at the Earth’s surface is 1atm =
101325Pa. Find the mass of an entire vertical air column with an area of 1 m2.

Surface pressure is due to the weight of the overlying air. Since

P =
F
A

=
mg
A
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by the definition of pressure and Newton’s second law. Rearrangement gives

m
A
=

P
g

=
101325Pa
9.81ms−2

= 10329kgm−2

So for an area of 1 m2, the mass of air column is about 10329 kg.

Example 1.2.15 Calculate the density of an air parcel, if T = 275K, and P =
98000Pa.

By Ideal Gas Law, we have

pV = nR∗T

p =
nMair

V
R∗

Mair
T

p = ρRT

where Mair is the molar mass of air, 28.97 gmol−1, and R∗= 8.314J/mol/kg, then
R = R∗

Md
= 8.314J/mol/kg

28.97gmol−1 = 287Jkg−1 K−1. Plugging in the values, we have

ρ =
P

RT

=
98000Pa

(287Jkg−1 K−1)(275K)

= 1.242kgm−3

Example 1.2.16 Find the pressure at height of 1km, if the surface pressure is
1010hPa, and the average temperature in-between is 20 ◦C.

We have the barometric law as

p = p0e−z/H

where p0 is the surface pressure, H = RT̄
g is the scale height, where R comes from

the Ideal Gas Law for dry air, p = ρRT , as derived above. Then we haveCommon mistake:
Not using Kelvin
for the tempera-
ture.
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H =
RT̄
g

=
(287Jkg−1 K−1)(293.15K)

9.81ms−2

= 8572m
= 8.572km

The required pressure is

p = p0e−z/H

= (1010hPa)exp(
1km

8.572km
)

= 898.8hPa

Note that by Ideal Gas Law, if we assume that the temperature is constant, then
the density also vary exponentially according to the barometric law, ρ = ρ0e−z/H .

Example 1.2.17 What is the percentage change in scale height if the temperature
of an atmospheric column decreases from 20 ◦C to 10 ◦C. Common mistake:

Using degree Cel-
sius and getting
0.5 as the answer.

H
H0

=
RT/g
RT0/g

=
T
T0

=
283.15K
293.15K

= 0.9659

Therefore, the percentage change is 1−0.9659 = 3.41%.

Example 1.2.18 Find the thickness of a layer from p1 = 850hPa to p2 = 500hPa
if its average temperature is −10 ◦C.

To do this question we need to use the hypsometric equation, which can be de-
rived from the barometric law. For the two pressure level p1 and p2 respectively,
we have

p1 = p0e−z1/H

p2 = p0e−z2/H
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Dividing one with another gives
p1

p2
= e(z2−z1)/H

ln(
p1

p2
) =

z2− z1

H

∆z = H ln(
p1

p2
) =

RT̄
g

ln(
p1

p2
)

Using this, we get

∆z =
(287Jkg−1 K−1)(263.15K)

9.81ms−2 ln(
850hPa
500hPa

)

= 4085m

1.2.4 VERTICAL VARIATION OF TEMPERATURE IN THE AT-
MOSPHERE

Example 1.2.19 If a balloon contracts under constant pressure 1200hPa such
that its volume decreases by 1dm3, estimate the change in its internal energy if
there is no heat transfer.

By First Law of Thermodynamics, we have

dU = dq− pdV

Under the condition of constant p, it becomes

∆U = ∆q− p∆V

No heat transfer means dq = 0, noting that 1dm = 0.1m,

∆U = 0− (120000Pa)(−1×10−3 m3)

= 120J

Example 1.2.20 If a parcel expands adiabatically such that its pressure halves,
find the corresponding change in the temperature and volume.

Adiabatic processes satisfyCommon Mis-
take: Mixing up
p1 and p2 in the
expressions.

T2

T1
= (

p2

p1
)R/cp

V2

V1
= (

p1

p2
)cv/cp
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where the gas constant for dry air R = 287Jkg−1 K−1, and the specific heat ca-
pacity at constant volume and constant pressure are cv = 718Jkg−1 K−1 and cp =
1005Jkg−1 K−1. As a result, we have Alternative: Com-

pute either the
change in temper-
ature or volume
and then use Ideal
Gas Law to obtain
another.

T2

T1
= (

1
2
)287/1005 = 0.820

V2

V1
= (2)718/1005 = 1.641

Then the relative changes are −18.0% and +64.1% respectively.

Example 1.2.21 An air parcel initially with T0 = 25◦C at sea level rises to
1.5 km high. Estimate its new temperature if the motion is dry adiabatic.

Dry adiabatic means no heat transfer between the parcel and environment, while
dry means there is no condensation and hence heat coming from it. For a small
distance, the dry adiabatic lapse rate is applicable, with a value of

γ =
g
cp

=
9.81ms−2

1005Jkg−1 K−1 = 0.00976Km−1 = 9.76◦C/km

Subsequently, the new temperature is

Tn = T0− γ∆z
= 25◦C− (9.76◦C/km)(1.5km)

= 10.36◦C

For cases where the air parcel is descending, ∆z would be negative.

Example 1.2.22 Find the acceleration due to buoyancy, if an air parcel has a
temperature of 240 K and the environment has a temperature of 250 K.

By Archimedes’ Principle, buoyancy on an air parcel is given as

a = g
ρe−ρ

ρ

= g
p/RTe− p/RT

p/RT

= g
T −Te

Te
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where we have applied Ideal Gas Law. Plugging in the numbers, we have

a = (9.81ms−2)(
240K−250K

250K
)

=−0.392ms−2

The air parcel is being pulled downwards with a negative acceleration, but not
necessarily have a downward velocity.

Example 1.2.23 An air parcel have a dew-point temperature of 8 ◦C. Find the
partial pressure and hence the mass mixing ratio of water vapor of the air parcel if
it is located at a level of 1000 hPa.

Dew-point temperature indicates the temperature at which the saturated vapor
pressure, or the maximum capacity of water vapor, equals to the actual vapor
pressure due to the water it holds. Below such temperature condensation occurs.
Hence it is an indicator of the actual water content inside the air parcel. An ac-
ceptable approximation for T < 25◦C isCommon Mis-

take: Using the
wrong units for
the expression of
saturated vapor
pressure.

es = (6.108hPa)e(0.0668/◦C)T

where T is in degree C. we need other approximation for different ranges of tem-
perature. The saturated vapor pressure at dew-point temperature, and therefore
the actual vapor pressure it bears at the moment, is then

e = es(T = 8◦C)

= (6.108hPa)e0.0668(8)

= 10.42hPa

The mass mixing ratio is formulated as

ρv

ρ
=

e/RvT
p/RT

= 0.622
e
p

where we apply Ideal Gas Law for dry air and water vapor respectively, having
Rv =

R∗
Mv

and Mv = 18gmol−1. Subsequently,

ρv

ρ
= 0.622

10.42hPa
1000hPa

= 0.00648kgkg−1

= 6.48gkg−1

The result is interpreted as for every 1 kg of air, it holds 6.48 g of water vapor.
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Example 1.2.24 A weather station reports a dew-point temperature of 12 ◦C and
an air temperature of 17 ◦C. Calculate the relative humidity in this scenario.

Notice the definition of dew-point temperature means that it is always below the
actual air temperature, since the actual water content represented by the dew-point
temperature must be lower than the saturation vapor pressure corresponding to the
air temperature.

Schematic of the Example.

Relative humidity is the ratio between the actual vapor pressure, which is also the
saturation pressure at dew-point temperature, and the saturation vapor pressure at
air temperature, so

R.H =
es(Td)

es(Ta)

=
(6.108hPa)e0.0668(12)

(6.108hPa)e0.0668(17)

= 0.716 = 71.6%

Example 1.2.25 Dew-point temperature and dry adiabatic lapse rate, cloud base.
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1.3 BASIC ALGEBRA IN ESSC2010

1.3.1 HALF-LIFE CALCULATION

Example 1.3.1 Half-life of the radioactive Potassium-40 isotope is 1.3 billion
years. A rock sample has a parent-to-daughter ratio of 1:9. Estimate its age.

Relation between half-life τ and percentage of isotope remained is

N
N0

=

(
1
2

)t/τ

A parent-to-daughter ratio of 1:9 implies 1
9+1 = 1

10 of Potassium-40 remains.
Therefore,Common mistake:

Directly using
the parent-to-
daughter ratio as
the fraction of
remained isotope.

N
N0

=

(
1
2

)t/1.3Gya

=
1

10

ln
(

1
2

)t/1.3Gya

= ln
1

10
t

1.3Gya
ln

1
2
= ln

1
10

∴ t = (1.3Gya)
ln 1

10

ln 1
2

= (1.3Gya)
− ln10
− ln2

= (1.3Gya)
ln10
ln2

= 4.32Gya

Example 1.3.2 Carbon-14 has a half-life of 5700 years. Find the fraction of
carbon-14 remained if a tree is 20000 years old.

Substituting the age and half-life into the expression in the last example, we haveCommon mistake:
Mixing up the
numerator (age)
and denominator
(half-life).

N
N0

=

(
1
2

)20000yr/5700yr

=

(
1
2

)3.509

= 0.0879
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Example 1.3.3 A sedimentary rock sample with an estimated age of 200 Mya
contains the radioactive Uranium-235 and its decay product Lead-207. The ratio
of U235 and Pb207 inside the sample is measured to be 4.65:1. Estimate the half-
life of Uranium-235.

A parent-to-daughter ratio of 4.65:1 implies 4.65
4.65+1 ≈ 0.823 of Uranium-235 re-

mains. Using the relation in Example 1.3.1, we have

N
N0

=

(
1
2

)200Mya/τ

≈ 0.823

ln
(

1
2

)200Mya/τ

≈ ln0.823

200Mya
τ

ln
1
2
≈ ln0.823

∴ τ ≈ (200Mya)
ln0.5

ln0.823
≈ 712Mya

Also, ln0.823
ln0.5 = 200Mya

712Mya = 0.281 half-life has passed.

1.3.2 EARTHQUAKE MAGNITUDE AND ENERGY

Example 1.3.4 Given an earthquake has an average slip of 20 m, a total faulted
area of 300km× 10km. Estimate its seismic moment and calculate the moment
magnitude. You are given that shear modulus of the rock in question is 35 GPa.

The expression of seismic moment is

Mo = µDA

where µ , D, A are shear modulus, average slip and faulted area.

Substituting the values into the expression, we have

Mo = (35GPa)(20m)(300km×10km)

= (35×109 Pa)(20m)(300×103 m×10×103 m)

= 2.1×1021 Nm

= (2.1×1021 Nm)

(
1×105 dyne

1N

)(
1×102 cm

1m

)
= 2.1×1028 dyne cm
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Moment magnitude and seismic moment are related by

Mw = 0.667log10 Mo−10.733

where Mo has to be in dyne cm.

Substituting the answer above, we haveCommon mistake:
Seismic moment
not in dyne cm
when applying the
formula.

Mw = 0.667log10(2.1×1028 dyne cm)−10.733
= 8.2

Example 1.3.5 Estimate the amount of seismic energy released by the 2011 To-
hoku Earthquake which has a moment magnitude of 9.0.

The relation between seismic energy and moment magnitude is

log10 E = 1.5Mw +11.8

E = 10(1.5Mw+11.8)

where E is in dyne cm like Mo in the calculation of moment magnitude.

With Mw = 9.0, the total seismic energy released isCommon mistake:
Interpreting the
number evaluated
from the formula
as in Joule.

E = 101.5(9.0)+11.8

= 1025.3

= 2.00×1025 dyne cm

= (2.00×1025 dyne cm)

(
1N

1×105 dyne

)(
1m

1×102 cm

)
= 2.00×1018 Nm = 2.00×1018 J

For reference, energy released by the Hiroshima atomic bomb is about 63×1012 J.
Hence the seismic energy released by the 2011 Tohoku Earthquake is comparable
to that of 2.00×1018 J/63×1012 J≈ 31750 Hiroshima atomic bombs.

Example 1.3.6 In terms of energy, find how many times a Mw = 8.0 earthquake
is larger than a Mw = 6.5 earthquake.
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The required energy ratio is found by

E1

E2
=

10(1.5Mw1+11.8)

10(1.5Mw2+11.8)

=
10(1.5(8.0)+11.8)

10(1.5(6.5)+11.8)

= 10(1.5(8.0)+11.8)−(1.5(6.5)+11.8)

= 102.25

= 178

1.3.3 TSUNAMI WAVE

Example 1.3.7 Calculate the change in the wave speed of tsunami as it moves
from a water depth of H0 to Hn =

1
10H0.

Wave speed of tsunami is simply

v =
√

gH

Hence

v ∝ H
1
2

Therefore, Alternative: Di-
rectly compare
the wave speed
by substituting H0
and Hn into the
expression.

vn

v0
=

H
1
2

n

H
1
2

0

=

(
1

10H0

H0

) 1
2

=

(
1

10

) 1
2

= 0.316

So we conclude that the wave speed decreases to 31.6% of the initial as it moves
to shallower area.

Example 1.3.8 A tsunami wave is initially with an amplitude of 0.8 m and at a
water depth of 3000 m. Calculate the new wave amplitude if it moves to a water
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depth of 20 m.

We use the relation between amplitude and water depth, which is

A ∝ H−
1
4

This implies

An

A0
=

H
− 1

4
n

H
− 1

4
0

An = A0

(
Hn

H0

)− 1
4

= (0.8m)

(
20m

3000m

)− 1
4

= 2.80m

1.3.4 ISOSTASY

Example 1.3.9 Given that crust and mantle have a density of 2.7 gcm−3 and
3.3 gcm−3 respectively. If a mountain is 4 km high, finds the total thickness of the
crust there. It is given that average depth of the crust at sea level height is about
30 km.

Demonstration of Pratt’s Isostasy.
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By Archimedes’ Principle, we have

ρcg(h+d +H) = ρcgd +ρmgH
ρch+ρcH = ρmH

H(ρm−ρc) = ρch

H =
ρch

ρm−ρc

Substituting h = 4km, ρc = 2.7gcm−3, and ρm = 3.3gcm−3, we have

H =
(2.7gcm−3)(4km)

(3.3gcm−3)− (2.7gcm−3)

= (4.5)(4km)

= 18km

From the diagram, we obtain the total crustal thickness as 4+30+18 = 52km.

Example 1.3.10 If the maximum crustal thickness can be achieved is 70 km,
roughly estimate the height of the highest mountain that is possible to be created.

Using the equation in the last example, we have

H =
ρch

ρm−ρc

Hence the total crustal thickness in terms of the mountain height h is

h+d +H = h+30km+
ρch

ρm−ρc

hmax is then found by

hmax +
ρc

ρm−ρc
hmax +30km = 70km

hmax

[
1+

(2.7gcm−3)

(3.3gcm−3)− (2.7gcm−3)

]
= 40km

hmax(1+4.5) = 40km
hmax = 7.27km

which is an underestimation when compared to the height of the world’s highest
mountain, the Himalayas, which is about 8.85 km.
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1.4 PROBLEMS

Question 1.2.1 Find the value of Solar constant for Mars, given that the distance
of Mars from the Sun is 2.28×108 km.

Question 1.3.1 If the current rate of subduction 0.09m2 s−1 is applicable in the
past, find the thickness of sediments that have been subducted in the last 3 Gyr
if the mass of subducted sediments is equal to one-half the present mass of the
continents?
Assume the density of the continents qc is 2700kgm−3, the density of sediments
qs is 2400kgm−3, the continental area Ac is 1.9×108 km2 and the mean continen-
tal thickness hc is 35 km.

Question 1.3.2 If the area of the oceanic crust is 3.2×108 km2 and new seafloor
is now being created at the rate of 2.8km2/yr, what is the mean age of the oceanic
crust?
Assume that the rate of seafloor creation has been constant in the past.

Question 1.3.3 The frequency of aftershocks decreases roughly with the recip-
rocal of time after the main shock. This empirical relations was first descrbed by
Fusakichi Omori in 1894 and is known as the Omori’s law. It is expressed as

n(t) =
k

(c+ t)p

where k is the constant defining the overall rate, c is the constant defining the ini-
tial decay and p is a third constant that modifies the decay rates and typically falls
in the range 0.7-1.5.

Typically, the constant c ranges 10-60 seconds, which the decay rates changes
during the time after the mainshock from seconds to minutes.

Considering an aftershock sequence that can be fit with these values: k = 20 eqs,
c = 30s and p = 1. What would be rate of earthquakes per day at 1,2,10,40 days
after the mainshock respectively?

Not completed. To be written later.
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2.1 INTRODUCTION

2.1.1 DIFFERENTIATION

Derivative and Differentiation Differentiation is a process of finding deriva-
tive, which is the rate of change of value of a function with respect to a variable,
or geometrically, the slope of its tangent. A precise definition of derivative for a
function y = f (x) is

dy
dx

= lim
∆x→0

f (x+∆x)− f (x)
∆x

= f ′(x)

in which both d
dx and ′(x) denote differentiation against the variable x. However,

we would not go into much detail about this, instead we would take a practical ap-
proach. Derivatives of common functions, as well as some rules of differentiation
would be introduced.

x = x0

y = f (x)

slope = dy
dx at x = x0

A function (black line) with its tangent (red line) at a given point shown. The
derivative of the function at that point is the slope of the highlighted tangent.

Derivatives of k and k f (x) Derivative of a constant function y = k is simply
zero, since a constant function has a slope of zero everywhere. For any function
multiplied by a constant, like y = ku = k f (x), its derivative would be dy

dx =
d(ku)

dx =

k du
dx = k f ′(x). Here, k only serves as a proportionality constant and can be pulled

out from the derivative.

Derivative of xn Derivative of functions in the form of xn, where n 6= 0 is aMemo: Pulling
down the power
then decreasing
the power by one.

constant, is given by dxn

dx = nxn−1.

Distributive Law Derivative of a function composed by adding up multiple
functions follows the distributive law, meaning that taking derivative on the en-
tire function is equivalent to doing so on each term separately. Mathematically,
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derivative of y = u+ v = f (x)+g(x) is
dy
dx

=
d
dx

(u+ v) =
du
dx

+
dv
dx

= f ′(x)+g′(x)

Example 2.1.1 Find the derivative of 2x2 + 9
x +5.

d
dx

(2x2 +
9
x
+5) =

d
dx

(2x2)+
d
dx

(9x−1)+
d
dx

(5)

= 2
d
dx

(x2)+9
d
dx

(x−1)+
d
dx

(5)

= 2(2x)+9(−x−2)+(0)

= 4x− 9
x2

Derivatives of Trigonometric Functions Derivatives of common trigonometric
functions like sinx and cosx are given in the following table.

y = f (x) dy
dx = f ′(x)

sinx cosx
cosx −sinx
tanx sec2 x

secx = 1
cosx secx tanx

cotx = 1
tanx −csc2 x

cscx = 1
sinx −cscxcotx

sin−1 x 1√
1−x2

cos−1 x − 1√
1−x2

tan−1 x 1
1+x2

A full discussion can be found in Chapter 3.5 and 3.9 of the textbook Thomas’
Calculus : Early Transcendentals (12th Edition).

Derivatives of ex and lnx Derivatives of exponential function ex and logarith-
mic function lnx, are ex and 1

x respectively. Notice the derivative of ex returns
itself.

Product Rule If a function is composed by the product of two functions, i.e.
y = uv = f (x)g(x), then its derivative is found by the product rule, which is

dy
dx

=
d(uv)

dx
=

du
dx

v+u
dv
dx

= f ′(x)g(x)+ f (x)g′(x)

For a product composed by more than two functions, we can apply product rule
recursively.
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Example 2.1.2 Find the derivative of y = uv, in which u = ex and v = cosx.

d(ex cosx)
dx

=
dex

dx
cosx+ ex d cosx

dx
Product Rule

= ex cosx− ex sinx

Subsequently, find the derivative of y = uvw, in which u = x2, v = ex, and w =
cosx.

d(x2ex cosx)
dx

=
dx2

dx
(ex cosx)+ x2 d(ex cosx)

dx
Product Rule

= 2xex cosx+ x2 d(ex cosx)
dx

= 2xex cosx+ x2(ex cosx− ex sinx)

Quotient Rule Similarly we have the quotient rule for function in form of y =
u
v = f (x)

g(x) , which is

dy
dx

=
d
dx

(u
v

)
=

du
dx v−udv

dx
v2 =

f ′(x)g(x)− f (x)g′(x)
g(x)2

Example 2.1.3 Find the derivative of y = u
v , for u = lnx and v = x.

d
dx

(
lnx
x

)
=

d lnx
dx x− lnxdx

dx
x2 Quotient Rule

=
1
x x− lnx

x2

=
1− lnx

x2

Chain Rule An important problem arises when we have to find the derivative
of composite functions, like (3x+2)5 or sin(ln(x+1)). A composite function is a
function that enclose another function. The simplest composite function would be
in the form of y = f (z) = f (g(x)) where z = g(x) is a function of x and serves as
the input to the function f . In the previous example y = (3x+2)5, y = f (z) would
be z5 and z = g(x) would be 3x+2.

Now to evaluate the the derivative of composite functions we apply Chain Rule,
the name of which comes from the way that the resulted terms are chained one by
one. For y = f (z) and z = g(x), Chain Rule gives

dy
dx

=
dy
dz

dz
dx

= f ′(z)g′(x)
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Similarly, for y = f (z), z = g(u), and u = h(x), we have

dy
dx

=
dy
dz

dz
du

du
dx

= f ′(z)g′(u)h′(x)

In case of more variables, Chain Rule follows the same manner as above.

Example 2.1.4 Find the derivative of y = (2x+1)3 by Chain Rule.

To use Chain Rule, we identify y = f (z) = z3 and z = g(x) = 2x+ 1, then we
have

dy
dx

=
dy
dz

dz
dx

Chain Rule

=
dz3

dz
d(2x+1)

dx

= (3z2)
d(2x+1)

dx
= (3(2x+1)2)(2)

= 6(2x+1)2

We could have directly written

dy
dz

=
d(2x+1)3

d(2x+1)
= 3(2x+1)2

by treating (2x+1) as a whole.

To verify the answer, we expand (2x+1)3 and differentiate term by term.

d f
dx

=
d
dx

(2x+1)3

=
d
dx

(8x3 +12x2 +6x+1)

=
d
dx

(8x3)+
d
dx

(12x2)+
d
dx

(6x)+
d
dx

(1)

= 8
d
dx

(x3)+12
d
dx

(x2)+6
d
dx

(x)+
d
dx

(1)

= 8(3x2)+12(2x)+6(1)+(0)

= 24x2 +24x+6

= 6(2x+1)2
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Example 2.1.5 Calculate the derivative of e2x+cosx.

Writing y = f (z) = ez and z = g(x) = 2x+ cosx, we have

dy
dx

=
dy
dz

dz
dx

Chain Rule

=
d(ez)

dz
d(2x+ cosx)

dx
= (ez)(2− sinx)

= (2− sinx)e2x+cosx

Example 2.1.6 Calculate the derivative of sin(ln(x2 +1)).

We let y = f (z) = sinz, z = g(u) = lnu, u = h(x) = x2 +1, then

dy
dx

=
dy
dz

dv
du

du
dx

Chain Rule

=
d(sin(ln(x2 +1))

(ln(x2 +1))
d(ln(x2 +1))

d(x2 +1)
d(x2 +1)

dx

Differentiating each by each, we haveAlternative: Write
d sinz

dz
d lnu

du
d(x2+1)

dx
as in Example
2.1.4.

dy
dx

= (cos(ln(x2 +1))
(

1
x2 +1

)
(2x)

=
2x

x2 +1
(cos(ln(x2 +1))

Example 2.1.7 Evaluate d
dxxx.Common mis-

take: Treat x in
the power as a
constant and get
x(xx−1).

d
dx

xx =
d
dx

eln(xx)

=
d
dx

ex lnx

=

(
d

d(x lnx)
ex lnx

)(
d
dx

(x lnx)
)

Chain Rule

= ex lnx
(

x
d
dx

lnx+ lnx
d
dx

x
)

Product Rule

= eln(xx)

(
x

1
x
+ lnx

)
= xx (1+ lnx)
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Higher-order Derivatives We can define higher-order derivatives, which rep-
resent differentiation for multiple times. We use notations like dn

dxn and (n)(x) to
denote n-th order derivative with respect to x. Specifically, second-order derivative
for the function y = f (x) is written as

d2y
dx2 = f ′′(x)

Example 2.1.8 Find d2

dx2 (ex2
).

d
dx

(ex2
) =

d(ex2
)

d(x2)

d(x2)

dx
Chain Rule

= (ex2
)(2x)

d2

dx2 (e
x2
) =

d
dx

(
d
dx

(ex2
))

=
d
dx

((ex2
)(2x))

= (
d
dx

(ex2
))(2x)+(ex2

)(
d
dx

(2x)) Product Rule

= ((ex2
)(2x))(2x)+(ex2

)(2)

= (4x2 +2)ex2

Critical Point and Stationary Value y = f (x) reaches its local maximum or
minimum only if dy

dx = f ′(x) is zero at that point. Such point is called the critical
point and the value of the function there is called the stationary value. However,
not all critical points are local maximum or minimum.

If indeed they are, we can distinguish them by the second-order derivative test.
If d2y

dx2 = y′′(x) > 0 then the function concaves upwards, and the critical point is a

local minimum, and if d2y
dx2 = y′′(x)< 0 then the function concaves downward, and

it is a local maximum.
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dy
dx = 0, d2y

dx2 > 0

dy
dx = 0, d2y

dx2 < 0

Left: Local minimum of a function. Right: Local maximum of a function.

If the result of the second-order derivative test is inconclusive, then we can ob-
serve the change of dy

dx = f ′(x) which is the slope near the critical point, if the sign
changes from positive to negative, it is a local maximum, and the opposite implies
a local minimum.

Example 2.1.9 Find the local maximum or minimum of y = x3−2x2 + x−6, if
there are any.

We set dy
dx = 0 to find the critical point, which leads to

d
dx

(x3)− d
dx

(2x2)+
d
dx

(x)− d
dx

6 = 0

3x2−4x+1 = 0

x = 1 or
1
3

We compute the second-order derivative for the test, which isAlternative: Look
at how dy

dx changes
sign near x = 1
and x = 1

3 .

d2y
dx2 = 6x−4

At x = 1, d2y
dx2 = 6(1)−4 = 2 > 0, hence it is a local minimum.

At x = 1
3 , d2y

dx2 = 6(1
3)−4 =−2 < 0, hence it is a local maximum.

Taylor’s Series Taylor’s Series of a function is an infinite series which approx-
imates the function near a particular point. For a function y = f (x), at x = a, its
Taylor’s Series is

f (x) = f (a)+ f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2 +

f ′′′(a)
3!

(x−a)3 + ...

+
f (n)(a)

n!
(x−a)n + ...
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where f (n)(a) denotes the n-th order derivative of f (x) at x = a.

If a = 0, then it reduces to a Maclaurin Series, which has the form of

f (x) = f (0)+ f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)
3!

x3 + ...+
f (n)(0)

n!
xn + ...

Example 2.1.10 Find the Taylor’s Series of sinx at x = 0.

The n-th order derivatives of f (x) = sinx is

f (x) = sinx
f ′(x) = cosx
f ′′(x) =−sinx
f ′′′(x) =−cosx

f (4)(x) = sinx
...

and the pattern repeats for every 4 times of differentiation. Substituting x = 0,
then we have

f (0) = sin0 = 0
f ′(0) = cos0 = 1
f ′′(x) =−sin0 = 0
f ′′′(x) =−cos0 =−1

f (4)(x) = sin0 = 0
...

Hence the Taylor’s Series of sinx at x = 0 is

sinx = 0+ x+
0
2!

x2 +
−1
3!

x3 +
0
4!

x4 +
1
5!

x5 +
0
6!

x6 +
−1
7!

x7 + ...

= x− 1
3!

x3 +
1
5!

x5− 1
7!

x7 + ...
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List of Common Taylor’s Series We list out the commonly used Taylor’s Series
for some functions in the list below.

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ ...

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ ...

tan−1 x = x− x3

3
+

x5

5
− x7

7
+ ...

ex = 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+ ...

ln(1+ x) = x− x2

2
+

x3

3
− x4

4
+ ...

1
1− x

= 1+ x+ x2 + x3 + x4 + ...

(1+ x)n = 1+nx+
n(n−1)

2!
x2 +

n(n−1)(n−2)
3!

x3 + ...

However, the Taylor’s Series does not always converge, that is, approaches the
should-be value, if x is outside a certain range, called the radius of convergence.
The readers are encouraged to check the radii of convergence of the Taylor’s Series
given above.

Example 2.1.11 Prove Euler’s Formula, that is

eıθ = cosθ + ısinθ

Express both sides in Taylor’s Series, we have

L.H.S. = 1+ ıθ +
(ıθ)2

2!
+

(ıθ)3

3!
+

(ıθ)4

4!
+ ...

= 1+ ıθ − θ 2

2!
− ıθ 3

3!
+

θ 4

4!
+ ...

R.H.S = (1− θ 2

2!
+

θ 4

4!
− ...)+ ı(θ − θ 3

3!
+ ...)

= 1+ ıθ − θ 2

2!
− ıθ 3

3!
+

θ 4

4!
+ ...= L.H.S.

Partial Derivatives Partial derivatives is the derivative with respect to a certain
variable when the function being differentiated consists of multiple variables. To
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proceed, we treat all other variables as constants and carry out differentiation as
usual. We use notations such as

∂

∂x
,

∂

∂y

to represent partial differentiation against x and y. Rules like Product Rule, Quo-
tient Rule, and Chain Rule assumes similar forms but with partial derivative signs.

Example 2.1.12 Find the partial derivatives of sin(x2y) with respect to x and y.

∂

∂x
(sin(x2y)) =

∂ (sin(x2y))
∂ (x2y)

∂ (x2y)
∂x

Chain Rule

= (cos(x2y))(2xy)

∂

∂y
(sin(x2y)) =

∂ (sin(x2y))
∂ (x2y)

∂ (x2y)
∂y

Chain Rule

= (cos(x2y))(x2)

Clairaut’s Theorem Clairaut’s Theorem states that for mixed partial deriva-
tives, the order of differentiation does not matter, if the relevent derivatives are
continuous. Specfically, for second-order mixed partial derivatives, we have

∂ 2z
∂x∂y

=
∂ 2z

∂y∂x

or using subscripts to denote partial derivatives, we have

zxy = zyx

where z(x,y) is a function of x and y.

Example 2.1.13 Verify Clairaut’s Theorem for second-order partial derivatives
on z = x2y2 + xy3.

zxy = (x2y2 + xy3)xy

= (2xy2 + y3)y

= 4xy+3y2

zyx = (x2y2 + xy3)yx

= (2x2y+3xy2)x

= 4xy+3y2 = zxy
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Critical Point and Stationary Value - Revisited For a function z= f (x,y) with
two variables, if zx and zy both are zero at a point then it is a critical point. To
know if it is a local minimum or maximum, we apply an extended version of the
second-order derivative test. If zxx > 0 and zxxzyy− z2

xy > 0, it is a local minimum.
If zxx < 0 and zxxzyy−z2

xy > 0, it is a local maximum. Otherwise if zxxzyy−z2
xy < 0,

then it is called a saddle point.

Example 2.1.14 Find the critical point of z(x,y) = x2 +y2 and determine its na-
ture.

The first-order partial derivative is easily seen to be zx = 2x and zy = 2y. Only
at (0,0), they will both become zero. Hence (0,0) is the desired critical point.
Next we apply the second-order derivative test by computing

zxxzyy− z2
xy = (2)(2)− (0)2

= 4 > 0

for any point on the surface. Therefore, it is a local minimum.

Chain Rule for Multiple Variables If u = f (x,y,z) is a function of the interme-
diate variables x(t), y(t), and z(t), which are functions of another variable t, then
Chain Rule takes the form of

du
dt

=
∂u
∂x

dx
dt

+
∂u
∂y

dy
dt

+
∂u
∂ z

dz
dt

It follows the same manner for two intermediate variables.
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Example 2.1.15 Find dz
dt if z = x2 + e−y2

with x = sin t and y = cos t.

dz
dt

=
∂ z
∂x

dx
dt

+
∂ z
∂y

dy
dt

Chain Rule for Multiple Variables

=
∂ (x2 + e−y2

)

∂x
dx
dt

+
∂ (x2 + e−y2

)

∂y
dy
dt

=
∂ (x2)

dx
dx
dt

+
∂ (e−y2

)

∂y
dy
dt

=
∂ (x2)

dx
d(sin t)

dt
+

∂ (e−y2
)

∂ (−y2)

∂ (−y2)

∂y
d(cos t)

dt
Chain Rule

= 2x
d(sin t)

dt
+(e−y2

)(−2y)
d(cos t)

dt
= 2x(cos t)−2ye−y2

(−sin t)

= 2sin t cos t +2sin t cos te(−cos t)2
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2.1.2 INTEGRATION

Integral and Integration Integration is the inverse operation of differentiation.
An integral of y = f (x) has the form of

ˆ
f (x)dx

where
´

dx denotes integration with respect to x, with dx as an infinitely small
segment along the x direction. This form is also called indefinite integral. Ge-
ometrically, it is the signed area under the curve y = f (x) expressed in terms of
x. When we calculate such integral, the end result has to include an integration
constant since the area does not have an interval specified.

Area =
´

f (x)dx

y = f (x)

A function (black line) and its area integral shown. Individual bar has a width of
dx and an area of f (x)dx. Their sum is the value of the integral

´
f (x)dx.

Integral of k f (x) Integral in form of k f (x) where k is a constant is simply´
k f (x)dx = k

´
f (x)dx. k can be pulled outside the integral sign, similar to what

we have for differentiation.

Integral of xn Integral of functions in the form of xn, where n 6=−1 is a constant,Memo: Raising
the power by 1
and dividing by
the new power.

is given by
´

xndx = 1
n+1xn+1 +C, where C denotes the integration constant.

Distributive Law Integral, just like derivative, follows the distributive law, which
means that we can apply the integral separately on each additive term. If f (x) =
g(x)+h(x), then we have

ˆ
f (x)dx =

ˆ
(g(x)+h(x))dx =

ˆ
g(x)dx+

ˆ
h(x)dx

Example 2.1.16 Find
´
(6x3 + 8

x2 +1)dx.Common mistake:
Forgetting to add
the integration
constant.
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ˆ
(6x3 +

8
x2 +1)dx =

ˆ
6x3dx+

ˆ
8x−2dx+

ˆ
dx

= 6
ˆ

x3dx+8
ˆ

x−2dx+
ˆ

dx

= 6(
1
4

x4)+8(−x−1)+ x+C

=
3
2

x4− 8
x
+ x+C

Integrals of ex and 1
x Integration of ex and 1

x gives ex and ln |x|. It is basically
the reverse of differentiating ex and lnx described in earlier section, but with an
absolute sign in ln.

Integrals of Trigonometric Functions Below is a table summarizing integrals
involving common trigonometric functions, which is closely related with the afore-
mentioned table of derivatives of trigonometric functions.

f (x)
´

f (x)dx (+C)
sinx −cosx
cosx sinx
sec2 x tanx

secx tanx secx
csc2 x −cotx

cscxcotx −cscx
1√

1−x2 sin−1 x
− 1√

1−x2 cos−1 x
1

1+x2 tan−1 x

Example 2.1.17 Evaluate
´
(2secx tanx+ 3

x )dx.

ˆ
(2secx tanx+

3
x
)dx =

ˆ
2secx tanxdx+

ˆ
3
x

dx

= 2
ˆ

secx tanxdx+3
ˆ

1
x

dx

= 2secx+3lnx+C

Integration by Substitution Integration by substitution is an important integra-
tion technique which is essentially the reverse of differentiation by Chain Rule. It
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involves changing the differential dx into du, where u is a function of x, then
integrating with respect to u. The formulation is

ˆ
f (g(x))

du
dx

dx =
ˆ

f (u)du

where we choose u = g(x) and du = du
dx dx. Now we would look at some examples

to understand how it works.

Example 2.1.18 Integrate x(x2 +3)4.

To use integration by substitution, we choose u = x2 + 3 and du = du
dx dx = 2xdx,

then we haveAlternative: Ex-
pand x(x2 + 3)4

and integrate term
by term.

ˆ
x(x2 +3)4 =

ˆ
1
2
(x2 +3)4(2xdx)

=

ˆ
1
2

u4du Integration by Substitution

=
1

10
u5 +C

=
1

10
(x2 +3)5 +C

Example 2.1.19 Evaluate
´

tan(2x+7)dx.

First, rewriting the integral as

ˆ
tan(2x+7)dx =

ˆ
sin(2x+7)
cos(2x+7)

dx

We choose u = cos(2x+ 7), then by Chain Rule du = du
dx dx = −2sin(2x+ 7)dx,

subsequently
ˆ

tan(2x+7)dx =
ˆ

−1
2cos(2x+7)

(−2sin(2x+7)dx)

=−
ˆ

1
2u

du Integration by Substitution

=−1
2

ln |u|+C

=−1
2

ln |cos(2x+7)|+C
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Trigonometric Substitution Trigonometric substitution is a type of integration
by substitution manipulating trigonometric functions. It is particularly useful
when dealing with square root.

Example 2.1.20 Integrate 1
x
√

x2+1
.

To use trigonometric substitution, observe that tan2 θ + 1 = sec2 θ . Letting x =
tanθ and dx = dx

dθ
dθ = sec2 θdθ , we have

ˆ
1

x
√

x2 +1
dx =

ˆ
1

tanθ
√

tan2 θ +1
(sec2

θdθ) Integration by substitution

=

ˆ
sec2 θ

tanθ secθ
dθ

=

ˆ
cscθdθ

Further observe that if we let u = cscθ + cotθ , then

du
dθ

=−cscθ cotθ − csc2
θ

=−cscθ(cscθ + cotθ)

now we have

ˆ
cscθdθ =

ˆ
cscθ

cscθ + cotθ

cscθ + cotθ
dθ

=

ˆ
−(−cscθ(cscθ + cotθ)dθ)

cscθ + cotθ

=

ˆ
−du

u
Integration by Substitution

=− ln |u|+C
=− ln |cscθ + cotθ |+C
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With x = tanθ , then cotθ = 1
x and cscθ =

√
1+ cot2 θ =

√
1+ 1

x2 =
1
x

√
x2 +1,

ˆ
cscθdθ =− ln |cscθ + cotθ |+C

=− ln |1
x

√
x2 +1+

1
x
|+C

=− ln |1
x
(
√

x2 +1+1)|+C

=− ln |1
x
|− ln |

√
x2 +1+1|+C

= ln |x|− ln |
√

x2 +1+1|+C

Partial Fraction Partial fraction is a technique that decomposes a fraction into
parts that are easier to be integrated each by each. We would see how the method
works in the following example.

Example 2.1.21 Integrate 3x+7
(x−1)(x+4) .

We assume that the expression can be written in the form of partial fractions which
is

3x+7
(x−1)(x+4)

=
A

x−1
+

B
x+4

where A, B are some constants. Factoring the right hand side gives

A
x−1

+
B

x+4
=

A(x+4)+B(x−1)
(x−1)(x+4)

=
(A+B)x+(4A−B)

(x−1)(x+4)

By comparing coefficients, we have

A+B = 3
4A−B = 7

which has a solution of A = 2, B = 1. Hence
ˆ

3x+7
(x−1)(x+4)

dx =
ˆ

(
2

x−1
+

1
x+4

)dx

= 2ln |x−1|+ ln |x+4|+C Integration by Substitution

For fractions that are more complicated, the form of partial fractions would change
accordingly.
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Integration by Parts Integration by parts is another important integration method
which is an integration counterpart of Product Rule for differentiation. Mathemat-
ically, it is expressed as

ˆ
u

dv
dx

dx =
ˆ

udv = uv−
ˆ

vdu = uv−
ˆ

v
du
dx

dx

Example 2.1.22 Evaluate
´

xexdx.

Let u = x and v = ex, also note that dv = exdx, we have

ˆ
xexdx =

ˆ
udv Integration by Substitution

= uv−
ˆ

vdu Integration by Parts

= xex−
ˆ

exdx

= xex− ex +C

Example 2.1.23 Find
´

lnxdx.

We can choose u = lnx and v = x then the integral is in the form of
´

udv.

ˆ
lnxdx = x lnx−

ˆ
xd(lnx) Integration by Parts

= x lnx−
ˆ

x
(

1
x

)
dx

= x lnx−
ˆ

dx

= x lnx− x+C

Example 2.1.24 Find
´

ex sinxdx. Alternative: Start
with

´
sinxd(ex).

Common mis-
take: Forgetting
the minus sign
in d(cosx) =
−sinxdx.
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ˆ
ex sinxdx =

ˆ
−exd(cosx) Integration by Substitution

= (−ex cosx)−
ˆ

cosxd(−ex) Integration by Parts

= (−ex cosx)+
ˆ

cosxexdx

=−ex cosx+
ˆ

exd(sinx) Integration by Substitution

=−ex cosx+(ex sinx)−
ˆ

sinxd(ex) Integration by Parts

= ex(sinx− cosx)−
ˆ

ex sinxdx

HenceCommon mistake:
Forgetting to in-
clude the integra-
tion constant at
the last step.

ˆ
ex sinxdx = ex(sinx− cosx)−

ˆ
ex sinxdx

2
ˆ

ex sinxdx = ex(sinx− cosx)
ˆ

ex sinxdx =
1
2

ex(sinx− cosx)+C

Fundamental Theorem of Calculus Fundamental Theorem of Calculus relates
indefinite integral to definite integral which has an interval, i.e. a lower limit and
an upper limit, and is written as

ˆ b

a
f (x)dx

which represents the signed area under the curve y = f (x) inside the interval x =
[a,b]. If f (x) integrates to F(x), then

ˆ b

a
f (x)dx = F(b)−F(a)

Integration variables like x in the definite integral above is called a dummy vari-
able since eventually the results do not depend on them and thus they can be
replaced by any other dummy variables. Also, we have properties like

ˆ b

a
f (x)dx =

ˆ c

a
f (x)dx+

ˆ b

c
f (x)dx

ˆ a

b
f (x)dx =−

ˆ b

a
f (x)dx
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Another form of Fundamental Theorem of Calculus is

d
du

ˆ u

a
f (x)dx = f (u)

where u is a function of x. The geometrical meaning of this form is, the rate of
change of the area under the curve y = f (x) as the upper limit u changes equals to
the value of f (u) there. Definite integrals have no integration constants, since it is
cancelled out as in F(b)−F(a).

Example 2.1.25 Find
´ 10

1 e3xdx. Caution: The lim-
its are for the vari-
able x. If you
want to write u =
3x, the limits have
to be changed ac-
cordingly.

ˆ 10

1
e3xdx =

1
3

ˆ 10

1
e3xd(3x) Integration by Substitution

=
1
3
[e3x]10

1

=
1
3
(e3(10)− e3(1)) Fundamental Theorem of Calculus

=
1
3
(e30− e3)

Example 2.1.26 Find d
dx

´ x2

a (x3 +1)dx.

Let the upper limit be u = x2, then applying Chain Rule, we have

d
dx

ˆ x2

a
(x3 +1)dx =

[
d
du

ˆ u

a
(x3 +1)dx

]
du
dx

Chain Rule

= (u3 +1)
d(x2)

dx
Fundamental Theorem of Calculus

= (x6 +1)(2x)

Example 2.1.27 Find
´ a
−a sinxdx.

Notice that sin(−x) = −sinx, that is, sine is an odd function. Then graphically,
the signed area of sine inside [−a,0] and [0,a] cancels out each other. Therefore, Alternative: Pro-

ceed as usual and
compute the def-
inite integral like
Example 2.1.24.

the integral evaluates to zero.
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y = sinx

Area = -A

Area = A

A sine function which is shown to have equal area but different signs on both sides.

Similar logic can be applied to even functions. If f (x) is even, we have
ˆ a

−a
f (x)dx = 2

ˆ a

0
f (x)dx

Multi-variable Integration To integrate a function in multiple independent vari-
ables, proceed similarly to the calculation of partial derivatives, treating all other
variables as constants, except the one inside the differential. It can be viewed as
the inverse of partial differentiation.

Example 2.1.28 Find
´

f (x,y)dy where f (x,y) = xexy.Caution: x here is
treated as a con-
stant here. Hence
x can be pulled
into the differen-
tial, xdy = d(xy).

Common mis-
take: Integration
constant not as a
function of x.

ˆ
xexydy =

ˆ
exyd(xy) Integration by Substitution

= exy +C(x)

where C(x) is any function of x but not y. C(x) would vanish and give us back the
original expression if we are to apply the reverse operation, partial differentiation
with respect to y.
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2.1.3 MISCELLANEOUS

Operations on Differentials To evaluate differentials consisting of multiple
variables like d(xy) and d(x

y), we proceed as if calculating derivatives but without
the differential in the denominator. Implicitly used is the Chain Rule for multiple
variables.

Example 2.1.29 Evaluate d(xy) and d(x
y).

d(xy) = xdy+ ydx Product Rule

d(
x
y
) =

ydx− xdy
y2 Quotient Rule

Limits and L’Hospital’s Rule We have purposely omitted the treatment on lim-
its, which is sometimes used to express where a quantity approaches when the
independent variable tends to zero, infinity, or some singularities. Here we intro-
duce the most important practical result of limits, which is the L’Hospital’s Rule.
It states that

lim
f (x)
g(x)

= lim
f ′(x)
g′(x)

as long as both the limits of f (x) and g(x) goes to zero, or infinity. It can be
repeatedly applied if this condition holds.

Example 2.1.30 Find the limit of

lim
x→0

sinx
x

Since limx→0 sinx and limx→0 x both approaches to zero, but they are not a constant
zero, we can apply L’Hospital’s Rule.

lim
x→0

sinx
x

= lim
x→0

cosx
1

L’Hospital’s Rule

= 1

Hyperbolic Functions Hyperbolic functions are composed of exponential func-
tions which have properties similar to trigonometric functions. The two most com-
monly used hyperbolic functions are sinhx = ex−e−x

2 and coshx = ex+e−x

2 . Their
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derivatives are

d(sinhx)
dx

=
d
dx

(
ex− e−x

2
)

=
ex + e−x

2
Chain Rule

= coshx

and

d(coshx)
dx

=
d
dx

(
ex + e−x

2
)

=
ex− e−x

2
Chain Rule

= sinhx

and conversely, the integrals of sinhx and coshx are coshx and sinhx. It can also
be observed that the second-order derivatives of sinhx and coshx return them-
selves.

Some important hyperbolic identities are

cosh2 x− sinh2 x = 1

cosh2 x+ sinh2 x = cosh2x
2sinhxcoshx = sinh2x

Example 2.1.31 Differentiate and integrate sinh2 xcoshx.Alternative: Write
the expression in
terms of exponen-
tial functions.

d
dx

(sinh2 xcoshx) = (sinh2 x)
d
dx

(coshx)+(coshx)
d
dx

(sinh2 x) Product Rule

= (sinh2 x)(sinhx)+(coshx)(2sinhxcoshx) Chain Rule

= sinhx(sinh2 x+2cosh2 x)

ˆ
sinh2 xcoshxdx =

ˆ
sinh2 xd(sinhx) Integration by Substitution

=
1
3

sinh3 x+C

Displacement, Velocity, Acceleration Displacement or position of an object
along an axis, denoted as x(t), which is a function of time t, can be differentiated
to obtain the velocity v = dx

dt . Differentiating once more gives the acceleration
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a = dv
dt =

d2x
dt2 .

Reversely, acceleration can be integrated to retrieve the velocity by v =
´

a(t)dt =´ dv
dt dt =

´
dv. Integrating the velocity similarly gives the displacement s=

´
v(t)dt.

Example 2.1.32 An object’s displacement is given by x(t) = t3 +6t2 +12t +4
(in m). Find its velocity and acceleration at t = 1 (in s).

v =
ds
dt

=
d
dt
(t3 +6t2 +12t +4)

= 3t2 +12t +12

a =
dv
dt

=
d
dt
(3t2 +12t +12)

= 6t +12

So at t = 1s, the velocity and acceleration are 3(1)2 +12(1)+12 = 27ms−1 and
6(1)+12 = 18ms−2 respectively.

Example 2.1.33 If an object has a velocity of v(t) = e−t . Find express the dis-
placement in t if displacement at t = 0 is 0.

s =
ˆ

vdt

=

ˆ
e−tdt

=−
ˆ

e−td(−t) Integration by Substitution

=C− e−t

At t = 0, s = 0, so

C− e−0 = 0
C = 1

Therefore, s = 1− e−t .
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Example 2.1.34 Derive the commonly used formula for constant acceleration.

v =
ˆ t

0
adt

= u+at

s =
ˆ t

0
vdt

=

ˆ
(u+at)dt

= ut +
1
2

at2

ˆ v

u
vdv =

ˆ t

0

(
ds
dt

)(
dv
dt

)
dt

=

ˆ s

0
ads

Integrating both sides, we get [
1
2

v2
]v

u
= [as]s0

v2−u2 = 2as

2.2 BASIC CALCULUS IN ESSC2020

2.3 BASIC CALCULUS IN ESSC3220

2.4 PROBLEMS

Question 2.1.1 Find the following derivatives.
(a) d

dx(7x4 +6x3 +8x+11) (b) d
dx(e

x + 1
x2 ), (c) d

dx(tanx lnx), and (d) d
dx(

x
sinx).

Question 2.1.2 Find the following derivatives.
(a) d

dx(4x2 +5x+3)3, (b) d
dx(ln(tan(x−1)), (c) d

dx(cos−1(x2 +1)), (d) d
dxe−x2

.

Question 2.1.3 Evaluate

d
dx

(xsin2 x)
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Question 2.1.4 Evaluate

d2

dx2 (e
cosx)

Question 2.1.5 Find any local maxima or minima of
(a) (x−3)(x2 +3x+1), (b) x

x2+k2 , where k is a constant, (c) xe−x, for 0 < x < e.

Question 2.1.6 Verify the Taylor’s Series

ln(1+ x) = x− x2

2
+

x3

3
− x4

4
+ ...

and

tan−1 x = x− x3

3
+

x5

5
− x7

7
+ ...

Question 2.1.7 Expand and obtain the first three terms of

(1+ x)
3
2

Find the error of the approximation for x = 1.

Question 2.1.8 Find the partial derivatives with respect to x and y for the fol-
lowing expressions.
(a) x3 +4xy2 +2y3, (b) y√

x2+y2
, (c) cos(xey).

Question 2.1.9 Verify Clairaut’s Theorem for second-order partial derivatives
of

z =
xey

lnx

Question 2.1.10 Find any local maxima or minima for the following functions
with two independent variables.
(a) z = x4 + y4, (b) z = xy2, (c) z = sin(πx)e−y2

.

Question 2.1.11 With x = t2 and y = et , find dz
dt if

(a) z = x2y, and (b) z = ysinxy.
Repeat for x = cos t, y = e−t2

.
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Question 2.1.12 Calculate the following integrals.
(a)
´
(7x2 + 4

x3 )dx, (b)
´
(1

x + secx tanx)dx.

Question 2.1.13 Evaluate the following integrals.
(a)
´
(x2ex)dx, (b)

´
((x3 + 3x+ 1)2(x2 + 1))dx (c)

´
(sin3 x)dx, (d)

´
(cos4 x)dx,

(e)
´
(sec3 x)dx, (f)

´
(x lnx)dx, (g)

´
(ex cosx)dx.

Question 2.1.14 Compute the following integrals by trigonometric substitution.ˆ
dx√

x2 +a2

and ˆ √
x2−a2dx

where a is some constant.

Question 2.1.15 Find ˆ
5x2 +2x−2

(x−1)2(2x+3)
dx

by assuming the partial fractions

5x2 +2x−2
(x−1)2(2x+3)

=
A

x−1
+

B
(x−1)2 +

C
2x+3

Question 2.1.16 Find the following definite integrals.
(a)
´ 4

2 (xe3x)dx, (b)
´ 2π

0 (sinxcos2x)dx.

Question 2.1.17 Evaluate the following expression.

d
dx

ˆ sinx

a
(4x2 +5)dx

Question 2.1.18 Evaluate the following integral.

d
dx

ˆ x3

x
(xex2+1)dx

Hints: Splitting the integral into

d
dx

ˆ x3

a
(xex2+1)dx− d

dx

ˆ x

a
(xex2+1)dx

where a is any constant.
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Question 2.1.19 Prove that
ˆ a

−a
(

1
1+ ex −

1
2
)dx = 0

Question 2.1.20 Find the following integrals.
(a)
´

xyexy2
dy, (b)

´ x
(x2y+1)ydx.

Question 2.1.21 Integrate and differentiate

tanhx =
sinhx
coshx

Question 2.1.22 Find the limit of

lim
x→0

1− e−x cosx
e−x sinx

Question 2.1.23 Evaluate
ˆ

sinxdx
sinx+ cosx

by writing

sinx =
1
2
(sinx+ cosx)+

1
2
(sinx− cosx)

in the numerator.

Question 2.1.24 Evaluate
ˆ

dx

x
√

x2 +a2

by either trigonometric substitution, or making the substitution u =
√

x2 +a2 and
then apply the method of partial fraction.

Question 2.1.25 A ship spills oil which spreads on the sea surface uniformly in
a radial manner. The rate of increase in the area covered by oil is dA

dt = 10m2,
find the moving speed of the oil edge, i.e. the rate of increase in radius dr

dt by first
expressing A in terms of r.
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Question 2.1.26 A cone-shaped cup filled with water of a base radius of 4 cm
and height of 10 cm is leaking out water at a rate of dV

dt =−3cm3 through a hole
at the bottom. Find the rate of change in the water level dh

dt by first expressing V
in terms of h.

Question 2.1.27 Population growth can be modelled by

dN
dt

= kN(Nmax−N)

Find the value of N at the point where d
dt (

dN
dt ) =

d2N
dt2 = 0 which indicates the

growth of population begins to decline.

Question 2.1.28 Point A and Point B marked on the following diagram is sep-
arated by a straight river with width = 10 m. Find the minimum time needed for
a man to move from point A and point B if his swimming speed in the river is
2 ms−1 and walking speed on land is 3 ms−1.

Hints: Express the time t needed in terms of x indicated in the diagram then solve
dt
dx = 0, where 0 < x < 20. You should be able to get

t =

√
102 + x2

2
+

20− x
3

Also prove that the angle θ in this case is found by

sinθ =
2
3
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3.1 INTRODUCTION

Ordinary Differential Equation An ordinary differential equation (ODE) is a
equation involving functions of only one independent variable and their deriva-
tives. For examples,

dy
dx

= xy

d2y
dx2 +

dy
dx

+ y = 0

Here x is the independent variable and y = f (x) is the dependent variable. We are
going to learn how to solve them, starting from the easiest one.

First-order ODE A first-order ODE. as its name suggests, is an ODE which
involves derivative that is first-order only. This kind of ODE is often the easiest
to solve. Nevertheless, there are still first-order ODEs that can’t be solved analyt-
ically in elementary functions. The most common methods used are separation of
variables and integrating factor.

Separation of Variables Separation of Variables requires rearranging the equa-
tion such that each side has terms involving only one variable and its correspond-
ing differential, then integrating the both sides at the same time. To see how it
works, take a look at the examples below.

Example 3.1.1 Solve dy
dx = xy.

We start with rearranging the equation to get

dy
y

= xdx Separation of Variables

Integrating both sides givesCommon mistake:
Forgetting to add
the integration
constant.

ˆ
dy
y

=

ˆ
xdx

lny =
1
2

x2 +C

y = e(
1
2 x2+C)

y = Ae
1
2 x2

where A = eC.
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Example 3.1.2 Solve dy
dx =−

x+3
y .

We proceed as in Example 3.1.1, obtaining

dy
dx

=−x+3
y

ydy =−(x+3)dx Separation of Variablesˆ
ydy =−

ˆ
(x+3)dx

1
2

y2 =−1
2
(x+3)2 +C

(x+3)2 + y2 = R2

where R2 = 2C. The solution represents a family of circles centered at (−3,0).

Integrating Factor For a first-order ODE in form of

dy
dx

+P(x)y = Q(x)

separation of variables alone does not work so well. So the method of integrating
factor is developed. By multiplying both sides by an integrating factor e

´
P(x)dx,

we arrive at

e
´

P(x)dx dy
dx

+ e
´

P(x)dxP(x)y = e
´

P(x)dxQ(x)

Observe that the left hand side can be grouped such that it becomes

d
dx

(e
´

P(x)dxy) = e
´

P(x)dxQ(x)

The readers can verify this by using Product Rule and Fundamental Theorem of
Calculus.

Finally, we rearrange and integrate both sides to obtain

d(e
´

P(x)dxy) = e
´

P(x)dxQ(x)dx

e
´

P(x)dxy =
ˆ

e
´

P(x)dxQ(x)dx

It looks rather complicated, so it is better to have some worked examples to
demonstrate the principle.
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Example 3.1.3 Solve dy
dx +

4
x y = 3.

We identify P(x) = 4
x , then we have the integrating factor as

e
´

P(x)dx = e
´ 4

x dx

= e4lnx

= x4

Hence multiplying both sides by x4, we have

x4 dy
dx

+4x3y = 3x4 Integrating Factor

d
dx

(x4y) = 3x4

x4y =
ˆ

3x4dx

x4y =
3
5

x5 +C

y =
3
5

x+
C
x4

Example 3.1.4 Solve dy
dx +2y = 1.

This time, P(x) = 2, the integrating factor isAlternative: Use
separation of vari-
ables. e

´ x
0 2dx = e2x

Now multiplying both sides by e2x, then

e2x dy
dx

+2e2xy = e2x Integrating Factor

d
dx

(e2xy) = e2x

e2xy =
ˆ

e2xdx

e2xy =
1
2

e2x +C

y =
1
2
+Ce−2x
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Exact Equations A first-order ODE is exact if it can be written as

d f =
∂ f
∂x

dx+
∂ f
∂y

dy = 0

where f (x,y) is a function of x and y. d f is called the total differential here. In
fact, it comes from Chain Rule for multiple variables discussed in the last chapter.
Then we can solve it by integrating both sides to get

f (x,y) =C

In other words, a first-order ODE Mdx+Ndy = 0 is exact if and only if

∂M
∂y

=
∂N
∂x

=
∂ 2 f

∂x∂y

Example 3.1.5 Solve dy
dx =−

2x+y
x+2y .

Rearranging the equation gives

(x+2y)dy =−(2x+ y)dx
(2x+ y)dx+(x+2y)dy = 0

The equation is exact since ∂ (2x+y)
∂y = ∂ (x+2y)

∂x = 1. f (x,y) can be found by inte-
grating

´
Mdx and

´
Ndy, which gives Common mistake:

Integration con-
stants have wrong
dependence.

f =
ˆ

(2x+ y)dx = x2 + xy+G(y)

f =
ˆ

(x+2y)dy = xy+ y2 +H(x)

Comparing the results we conclude that f (x,y) = x2 + y2 + xy. So we have

(2x+ y)dx+(x+2y)dy = 0

d f = d(x2 + y2 + xy) = 0 Exact Equation

f (x,y) = x2 + y2 + xy =C

Implicit Differentiation Motivated by the above example, we want to verify its
answer as it is not in a form where y is readily the subject. Instead the variables
are related by an implicit equation. To do so we apply implicit differentiation,
which is differentiation on both sides of such equations.
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Example 3.1.6 By implicit differentiation, verify the answer in Example 3.1.5.

We take d
dx on both sides and utilize Chain Rule, thusAlternative: Re-

arrange the exact
equation to obtain
dy
dx =−

∂ f
∂x/

∂ f
∂y .

d
dx

(x2 + y2 + xy) =
d
dx

C

2x+2y
dy
dx

+ x
dy
dx

+ y = 0

dy
dx

=−2x+ y
x+2y

Example 3.1.7 Solve ydx− xdy = y3dy.

Although the equation is not exact, observe that the left hand side resembles the
result of Quotient Rule on d

(
x
y

)
, which is

d
(

x
y

)
=

ydx− xdy
y2

Therefore, dividing both side by y2, the equation becomesAlternative: Iden-
tify 1

y2 as the
integrating factor
by the method
described below.

ydx− xdy
y2 = ydy

d
(

x
y

)
= ydy

x
y
=

ˆ
ydy

x
y
=

1
2

y2 +C

x =
1
2

y3 +Cy

Integrating Factor - Revisited The method of integrating factor can be ex-
tended for non-exact equation that has the form Mdx+Ndy. We state two special
cases of integrating factors without proof here.

If g(x) = My−Nx
N is a function of x only, then

e
´

g(x)dx
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is an integrating factor.

Similarly, if h(y) = My−Nx
−M is a function of y only, then

e
´

h(y)dy

is an integrating factor.

We have to test whether the evaluated expression is a function depending on x
or y only, as we have assumed. For more details, readers can refer to Chapter 9 of
the textbook Differential Equations with Applications and Historical Notes (3rd
Edition).

Example 3.1.8 Solve Mdx+Ndy = 0 where M = 3x2y+ y3, N = 2xy2.

We would test whether g =
My−Nx

N is a function of x only and h =
My−Nx
−M is a

function of y only.

My−Nx

N
=

3x2 +3y2−2y2

2xy2

=
3x2 + y2

2xy2

which is not a function of x only. On the other hand,

My−Nx

−M
=−3x2 +3y2−2y2

3x2y+ y3

=− 3x2 + y2

3x2y+ y3

=−1
y

which is a function of y only, subsequently

e
´

h(y)dy = e
´
− 1

y dy

= e− lny

=
1
y

So we identify 1
y as the integrating factor. Now multiplying both sides of the

equation by 1
y , we get

(3x2 + y2)dx+2xydy = 0
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Now the equation is exact and we can proceed like Example 3.1.5. f (x,y) here
can be found from

f =
ˆ
(3x2 + y2)dx = x3 + xy2 +G(y)

f =
ˆ

2xydy = xy2 +H(x)

and so we conclude f (x,y) = x3 + xy2, then we have

d f = d(x3 + xy2) = 0 Exact Equation

f (x,y) = x3 + xy2 =C

Initial Conditions We have seen the solutions derived above consists of an in-
tegration constant C. To determine the value of C, we need a initial condition to
tell us the value of the function at a given point.

Example 3.1.9 Solve dy
dx = x+ y provided that y(0) = 3.

dy
dx

= y+ x

dy
dx
− y = x

The integrating factor is

e
´
(−1)dx = e−x

By multiplying e−x on both sides of the equation, we have

e−x dy
dx
− ye−x = xe−x Integrating Factor

d
dx

(e−xy) = xe−x

e−xy =
ˆ

xe−xdx

e−xy =−
ˆ

xd(e−x)

e−xy =−xe−x +

ˆ
e−xdx

e−xy =−xe−x− e−x +C
y =−(x+1)+Cex
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Now substitute x = 0, y = 3, we have

−(0+1)+Ce0 = 3
C = 4

Hence the solution is

y =−(x+1)+4ex

Second-order ODE with Constant Coefficients We have spent some time talk-
ing about how to solve first-order ODE. And now it is the time to move to second-
order ODE. We start with the most simplest form of such equation, which have
constant coefficients and are in the form of

ay′′+by′+ cy = 0

where a,b,c are constants. Here we use y′ to denote dy
dx and y′′ to denote d2y

dx2 .

We tackle this problem by using a test solution, which has the property that its
derivative returns itself times a constant so that the equation becomes simpler as
we will see below. The function satisfies such requirement is y = erx where r is
some constant to be found. Substitution gives

ar2erx +brerx + cerx = 0

ar2 +br+ c = 0

which becomes a quadratic equation in r. This is called the auxiliary equation.
Finding the two roots of r allows us to conclude that y1 = er1x and y2 = er2x are the
solutions we need. Note that their linear combination c1y1+c2y2 = c1er1x+c2er2x

satisfy the equation as well. This is the complete general solution where c1 and c2
are to be determined by initial conditions.

Example 3.1.10 Solve y′′−3y′+2y = 0, where y(0) = 5 and y′(0) = 0

In this case, a = 1, b =−3, c = 2. The auxiliary equation is

r2−3r+2 = 0

which has r = 1 or 2 as the solutions. Hence the general solution is

y = c1y1 + c2y2 = c1ex + c2e2x
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From the initial conditions, we have

c1e0 + c2e2(0) = 5
c1 + c2 = 5

and

c1e0 +2c2e2(0) = 0
c1 +2c2 = 0

Solving them gives c1 = 10 and c2 =−5. Therefore the full solution is

y = 10ex−5e2x

Example 3.1.11 Solve y′′−2y′+ y = 0.

We have the auxiliary equation as

r2−2r+1 = 0
r = 1

Since it is a double root, we only have y1 = ex as a solution. We want to find
another solution that is different. It can be proved that y2 = xy1 is another solution
that satisfies such equations and the readers are encouraged to do so. Hence the
general solution is

y = c1ex + c2xex

Example 3.1.12 Solve y′′−2y′+5y = 0, where y(0) = 1 and y′(0) = 0.

The auxiliary equation is

r2−2r+5 = 0
r = 1±2ı

which are complex. Hence we have y1 = e(1+2ı)x and y2 = e(1−2ı)x as the solutions.
However, we want them to be real-valued functions. In general, if y1 = e(a+bı)x

and y2 = e(a−bı)x then by using Euler’s Formula, their linear combination

y1 + y2

2
=

e(a+bı)x + e(a−bı)x

2

= eax eıbx + e−ıbx

2

= eax (cos(bx)+ ısin(bx))+(cos(bx)− ısin(bx))
2

= eax cos(bx)
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and

y1− y2

2ı
=

e(a+bı)x− e(a−bı)x

2ı

= eax eıbx− e−ıbx

2ı

= eax (cos(bx)+ ısin(bx))− (cos(bx)− ısin(bx))
2ı

= eax sin(bx)

are real-valued solutions that satisfy the equation. Hence in this case, the general
solution is

y = ex(c1 cos(2x)+ c2 sin(2x))

with

y′ = ex(c1 cos(2x)+ c2 sin(2x))+ ex(−2c1 sin(2x)+2c2 cos(2x))

As y(0) = 1 and y′(0) = 0, we have c1 = 1 and c2 =
−1
2 . So the complete solution

is

y = ex(cos(2x)− 1
2

sin(2x))

Euler’s Equation Euler’s equation is a variant of second-order ODE, which has
a form of

ax2y′′+bxy′+ cy = 0

It can be shown that by letting z = lnx and y(x) = Y (z), it becomes

aY ′′+(b−a)Y ′+ cY = 0

which then can be solved by the method described above. The derivations are pro-
vided in Chapter 17.4 of the textbook Thomas’ Calculus : Early Transcendentals
(12th Edition).

Example 3.1.13 Solve x2y′′−4xy′+6y = 0.

Making the transform z = lnx and y(x) = Y (z), it becomes Common mistake:
Forgetting to sub-
tract a from the
coefficient of Y ′.

Y ′′+(−4−1)Y ′+6Y = 0
Y ′′−5Y ′+6Y = 0
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The auxiliary equation is

R2−5R+6 = 0
R = 2 or 3

Hence the general solution is

Y = c1e2z + c2e3z

y = c1e2lnx + c2e3lnx

= c1x2 + c2x3

Non-homogeneous second-order ODE Up to this point all the second-order
ODEs we tackle are homogeneous, that is, G(x) = 0 as in

f (y′′,y′,y) = G(x)

where f (y′′,y′,y) only involves y and its derivatives but not x. Examples of non-
homogeneous second-order ODEs are

y′′+2y′+3y = sinx
y′′−5y′+4y = x

We can solve them by trial and error or Variation of parameters to get the particular
solution yp which appears due to G(x), then add it up with the complementary
solution yc for the complementary homogeneous ODE where G(x) is removed.

Example 3.1.14 Solve y′′−5y′+4y = 16x, where y(0) = 7 and y′(0) = 9.

We try a solution of yp = ax+b, substitution gives

−5(a)+4(ax+b) = 16x

Comparing the coefficients, we have a = 4 and b = 5. So the particular solution is

yp = 4x+5

The complementary homogeneous ODE is

y′′−5y′+4y = 0

and has the auxiliary equation as

r2−5r+4 = 0
r = 1 or 4
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the complementary solutions are y1 = ex and y2 = e4x. Subsequenly, the complete
solution is given by

y = c1y1 + c2y2 + yp

= c1ex + c2e4x +(4x+5)

Substituting y(0) = 7 and y′(0) = 9, we have

c1e(0)+ c2e4(0)+(4(0)+5) = 7
c1 + c2 = 2

c1e(0)+4c2e4(0)+4 = 9
c1 +4c2 = 5

Solving them leads to c1 = 1 and c2 = 1, and thus the complete solution is

y = ex + e4x +(4x+5)

Variation of Parameters Variation of Parameters is a powerful method of solv-
ing non-homogeneous second-order ODE with constant coefficients in form of
ay′′+by′+cy = G(x). Based on the complementary solution yc = c1y1+c2y2, we
solve the following system,

v′1y1 + v′2y2 = 0

v′1y′1 + v′2y′2 =
G(x)

a

After obtaining v′1 and v′2, we integrate them to retrieve v1 and v2. Then the par-
ticular solution is

yp = v1y1 + v2y2

where c1,c2 in yc are replaced by variables v1,v2 to produce yp. The procedure is
discussed in Chapter 17.2 of the textbook Thomas’ Calculus : Early Transcenden-
tals (12th Edition).

Example 3.1.15 Solve y′′− y′ = e−x.

The auxiliary equation for the complementary equation is

r2− r = 0
r = 0 or 1
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Hence the complementary solution is

y1 = 1,y2 = ex

Variation of parameters requires us to solveAlternative: Test
yp = Ae−x.

Common mistake:
Forgetting to di-
vide G(x) by a, al-
though in this case
a = 1.

v′1y1 + v′2y2 = 0 Variation of Parameters

v′1y′1 + v′2y′2 = e−x

Substitution gives

v′1 + v′2ex = 0

v′2ex = e−x

Solving directly, or by Cramer’s Rule, we have v′1 =−e−x and v′2 = e−2x. Integra-
tion gives

v1 = e−x,v2 =−
1
2

e−2x

Hence the full solution is

y = c1y1 + c2y2 + yp

= c1y1 + c2y2 + v1y1 + v2y2

= c1 + c2ex +(e−x)(1)− (
1
2

e−2x)(ex)

= c1 + c2ex +
1
2

e−x

Partial Differential Equation - Preview To solve a partial differential equa-
tion having partial derivatives with respect to a single particular variable only, we
proceed as if it is an ordinary differential equation with an appropriate integration
constant.

Example 3.1.16 Solve ∂y
∂x = xz where x and z are independent variables.

We apply separation of variables and the equation becomes

∂y = xz∂x Separation of Variables

We can treat the equation as

dy = xzdx
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while regarding z as a constant. Integrating both sides gives Common mistake:
Forgetting to in-
clude other inde-
pendent variables
in the integration
constant.

ˆ
dy =

ˆ
xzdx

y =
1
2

x2z+C(z)

where C(z) is any function in z only.

3.2 ODE IN ESSC3200

3.2.1 HYDROSTATIC BALANCE

Example 3.2.1 Derive the expression for hydrostatic balance, i.e. the weight of
an air parcel is balanced by the vertical pressure gradient.

The weight of an air parcel with size δxδyδ z is simply ρgδxδyδ z. The buoy-
ancy force due to pressure difference on top face A and bottom face B in the
vertical direction is

Fz = (−pA + pB)δxδy

= (−(pB +
∂ p
∂ z

δ z)+ pB))δxδy

=−∂ p
∂ z

δxδyδ z

where we have used Taylor’s series to the first order to rewrite pA. Hydrostatic
balance is then

−∂ p
∂ z

δxδyδ z = ρgδxδyδ z

∂ p
∂ z

=−ρg

This equation relates the pressure level to any height. Therefore, we can always
define a geopotential height z(p), which is the height at which the air pressure is
equal to p. A related quantity is the geopotential which is

ˆ z(p)

0
gdz

This quantity is useful when we later discuss the isobaric coordinates.
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Example 3.2.2 Derive the pressure profile for an isothermal atmosphere with
T = T0 a constant.

We need to use the equation of state to establish the relationship between tem-
perature, pressure and density. For the atmosphere, the ideal gas law is accurate
to be used, which takes the form of

pV = nR∗T

where R∗ is the universal gas constant 8.314 Jmol−1 K−1. However, for atmo-
spheric science, we usually use the form

p = ρRdT

where the gas constant of dry air Rd = R∗
Md

= 287Jkg−1 K−1 with the molar mass
of dry air Md = 28.97gmol−1. Notice the values are only applicable for the Earth.
With this, we can rewrite the hydrostatic equation as

∂ p
∂ z

=− p
RdT

g

∂ p
p

=− g
RdT

∂ z

We solve the equation by integrating both sides with appropriate boundary condi-
tions, viz. at z = 0, p = p0 the surface pressure, which gives

ˆ p

p0

d p
p

=−
ˆ z

0

g
RdT0

dz

ln(
p
p0

) =− g
RdT0

z

p
p0

= e−
g

RdT0
z

p = p0e−
g

RdT0
z

where the quantity RT
g is called the scale height and represents the vertical scale

of the atmosphere. This is called the barometric equation. At altitude equals to
one scale height the pressure drops to 1

e = 36.8% of the surface pressure.

Example 3.2.3 Derive the pressure profile for an atmosphere having a constant
lapse rate γ such that T = T0− γz.
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The hydrostatic equation is

∂ p
∂ z

=− p
Rd(T0− γz)

g

∂ p
p

=− g
Rd(T0− γz)

∂ z

Integrating in a manner similar to Example 3.2.2, we haveˆ p

p0

d p
p

=−
ˆ z

0

g
Rd(T0− γz)

dz

ln(
p
p0

) =
g

Rdγ
[ln(T0− γz)]z0

ln(
p
p0

) =
g

Rdγ
ln(

T0− γz
T0

)

ln(
p
p0

) = ln((
T0− γz

T0
)

g
Rd γ )

p
p0

= (
T0− γz

T0
)

g
Rd γ

p = p0(
T0− γz

T0
)

g
Rd γ

We can rearrange it to express the geopotential height z in terms of the pressure p
as can be seen in the next example.

In the subsequent sections, we would use R to denote Rd .

Example 3.2.4 Calculate the geopotential height at 500 hPa if the sea level pres-
sure is 1010 hPa and the layer in-between has a mean temperature of 0◦C.

Using the results of Example 3.2.2, we have Alternative: If the
reference height is
not at sea level,
we have z− z0 =
R〈T 〉

g ln p0
p

z =
R〈T 〉

g
ln

p0

p

which is called the hypsometric equation. 〈T 〉 denotes the mean temperature in
the layer. Substituting T = 273K, p = 500 hPa and p0 = 1010 hPa, the value of z
is 5536m.

3.2.2 THERMODYNAMICS OF DRY ATMOSPHERE

Example 3.2.5 Derive the expression of the dry adiabatic lapse rate.
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To do so, we need to utilize the first law of thermodynamics for unit mass, which
is

cvdT = dQ− pdα

where cv is the specific heat capacity at constant volume and has a value of
718Jkg−1 K−1 for dry air while α = V

m = 1
ρ

is the specific volume.

Notice that from the ideal gas law

d(pα) = d(RT )
pdα +αd p = RdT

To make use of it, we transform the first law of thermodynamics into another form
as

cvdT = dQ− pdα

cvdT +RdT = dQ− pdα +(pdα +αd p)
cpdT = dQ+αd p

where cp = cv+R is the specific heat capacity at constant pressure and has a value
of 1005Jkg−1 K−1 for dry air.

For adiabatic motion, dQ = 0, so we have

cpdT = αd p

Invoking the hydrostatic balance, ∂ p =−ρg∂ z, we have

cpdT =−αρgdz
cpdT =−gdz

dT
dz

=−
cp

g

Γd =
cp
g = 9.8Kkm−1 is then the dry adiabatic lapse rate we want.

Example 3.2.6 If an air parcel is rising at a rate of 0.025m/s, find the magni-
tude of the external radiative heating required to keep its temperature unchanged.

We start with the first law of thermodynamics differentiated with respect to time,
which is

cp
dT
dt

=
dQ
dt

+α
d p
dt
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Since the temperature is constant, dT
dt = 0. Noting that in atmospheric setting,

d p
dt ≈

∂ p
∂ z

dz
dt . Together with the hydrostatic balance ∂ p

∂ z =−ρg, the equation is now

dQ
dt

+α(−ρg)
dz
dt

= 0

dQ
dt

= g
dz
dt

So the required external heating is (9.81ms−2)(0.025m/s) = 0.245Wkg−1.

Example 3.2.7 Derive the expression of potential temperature, which is the tem-
perature a dry air parcel would have achieved if it moves adiabatically to a pressure
level of 1000 hPa.

To establish the relation, we first make use of the first law of thermodynamics,

cpdT = dQ+αd p

Adiabatic processes implies dQ = 0, hence

cpdT = αd p

cpdT =
RT
p

d p

dT
T

=
R
cp

d p
p

where we have used the equation of state. Integration with the boundary condition
T = θ which is the potential temperature at p = 1000 hPa, gives

ˆ T

θ

dT
T

=

ˆ p

1000

R
cp

d p
p

ln(
T
θ
) =

R
cp

ln(
p

1000
)

ln(
T
θ
) = ln((

p
1000

)
R
cp )

T
θ
= (

p
1000

)κ

where κ = R
cp

= 0.286. Potential temperature θ of an air parcel conserves if there
is no heat exchange.
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Example 3.2.8 Suppose an air parcel of temperature −10◦C is originally at a
pressure level of 700 hPa is raised adiabatically to a pressure level of 500 hPa.
Find its potential temperature and the new temperature at 500 hPa.

Using the expression of potential temperature derived above, we have

θ = T (
1000

p
)κ

Substituting T = 263.15K, p = 700 hPa, we conclude that θ = 291.4K. UsingCommon mistake:
Not converting
the temperature
into Kelvin before
calculation.

the value of θ just obtained and apply the expression again, at p = 500 hPa, T =
239.0K =−34.15◦C.

Example 3.2.9 Derive the relation about atmospheric stability and environmen-
tal potential temperature, which is

1
θe

∂θe

∂ z
=

1
Te
(
∂Te

∂ z
+

g
cp

) =
1
Te
(
∂Te

∂ z
+Γd) =

1
Te
(−Γe +Γd)

Take natural logarithm on the expression of potential temperature, we have

ln(
θ

T
) =

R
cp

ln(
1000

p
)

lnθ − lnT =
R
cp

(ln1000− ln p)

Differentiation on both sides with respect to z gives

∂

∂ z
lnθ − ∂

∂ z
lnT =− ∂

∂ z
R
cp

ln p

1
θ

∂θ

∂ z
− 1

T
∂T
∂ z

=− R
cp

1
p

∂ p
∂ z

Using hydrostatic balance and equation of state, we have

1
θ

∂θ

∂ z
=

1
T

∂T
∂ z
− R

cp

1
ρRT

(−ρg)

=
1
T

∂T
∂ z

+
1
T

g
cp

=
1
T
(
∂T
∂ z

+
g
cp

) =
1
T
(
∂T
∂ z

+Γd) =
1
T
(−Γ+Γd)

If ∂θe
∂ z > 0, then environmental lapse rate is smaller than the dry adiabatic lapse

rate Γe = −∂Te
∂ z < Γd , the atmosphere is stable. It is the opposite when ∂θe

∂ z < 0
and the atmopsphere is unstable.
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3.2.3 BUOYANCY WAVE

Example 3.2.10 Derive the expression for Brunt–Väisälä frequency of buoy-
ancy wave.

By Archimedes’ Principle, buoyancy force on an air parcel is

d2δ z
dt2 =

(ρe−ρ ′)V g
ρ ′V

=
δρ

ρ ′
g

where the subscript e and superscript ′ represents environment and parcel respec-
tively. δ z is the displacement of the parcel from the equilibrium level.

Taking natural logarithm on the expression of potential temperature and then dif-
ferentiating the expression of potential temperature with p fixed gives

lnθ − lnT =
R
cp

(ln1000− ln p)

lnθ + ln
ρR
p

=
R
cp

(ln1000− ln p)

1
θ

δθ +
1
ρ

δρ = 0

where δθ = θe−θ ′ = θe since θ ′ following an air parcel conserves as the motion
is adiabatic. The perturbations are small such that we have replaced ∂ with δ .
Combining them together, we have

d2δ z
dt2 +

δθe

θe
g = 0

d2δ z
dt2 +

g
θe
(
∂θe

∂ z
δ z) = 0

This is a second-order ordinary differential equation. If the atmosphere is stable,
i.e. ∂θe

∂ z > 0, then the solution is in the form δ z = Acos(Nt)+Bsin(Nt), where

N =
√

g
θe
(∂θe

∂ z ) =
√

g∂ lnθe
∂ z is called the Brunt–Väisälä frequency.

Example 3.2.11 At a certain height, the temperature is 10◦C and the environ-
mental lapse rate is Γ = −∂T

∂ z = 5◦C/km. Find the general expression for the
displacement δ z if at t = 0, the displacement δ z is zero and dδ z

dt is 0.1 ms−1.
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From the two examples above, the Brunt–Väisälä frequency is

N =

√
g
θe
(
∂θe

∂ z
) =

√
g
T
(
∂T
∂ z

+
g
cp

)

Substituting g = 9.81ms−2, T = 283.15K, ∂T
∂ z =−0.005Km−1, the value of N isCommon mistake:

Wrong sign and
non-SI unit for
∂T
∂ z .

0.01284rad/s. Hence the solution has the form of

δ z = Acos(0.01284t)+Bsin(0.01284t)

Applying the initial conditions at t = 0, we have

δ z = A = 0
dδ z
dt

= 0.01284B = 0.1

B = 7.786m

Example 3.2.12 Given the dispersion relation for propagating buoyancy wave
is

ω
2 =

N2k2

k2 +m2

where k = 2π

λx
and m = 2π

λz
are the zonal and vertical wavenumber, with a general

solution for pertubations in the form of

Acos(kx+mz−ωt +φ)

Using the value of N found in Example 3.2.11, find the horizontal phase speed if
horizontal wavelength and vertical wavelength are 4km and 100km respectively.

From the dispersion relation, we haveCommon mistake:
Not converting the
wavelength from
km into m. ω =±

√
N2k2

k2 +m2

=±

√
(0.01284)2(2π/4000)2

(2π/4000)2 +(2π/100000)2

=±0.1283rad/s

Notice how the value of ω is close to N as the vertical wavelength is much longer
than the horizontal one. Without the loss of generality, assume that the wave is
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propagating eastwards, such that ω and k are taken to be positive. Then the phase
speed is

cx =
ω

k

=
ωλx

2π

=
(0.1283)(4000)

2π
= 8.17ms−1

3.3 ODE IN ESSC3300

3.4 ODE IN ESSC3220

3.5 PROBLEMS

Question 3.1.1 Solve the following differential equations.

(a) dy
dx =

x2

y , (b) dy
dx =

√
y2−1

x−1 , (c) dy
dx = sec2 x tany.

Question 3.1.2 Solve the following differential equations.
(a) dy

dx + x3y = 8, (b) dy
dx +

5
x y = 7, (c) dy

dx +(tanx)y = 5.

Question 3.1.3 Solve the following differential equations.
(a) dy

dx =−
2x+3y
3x−4y , (b) (cosxcosy)dx− (sinxsiny)dy = 0,

(c) (ey2

x )dx+(2yey2
lnx)dy = 0.

Question 3.1.4 Solve the following differential equations.
(a) (x+2y)dx+ xdy = 0, (b) xydx+(x2 +2y2)dy = 0,
(c) cosxdx+(sinx+ y+1)dy = 0.

Question 3.1.5 Solve
dy
dx

+
2
x

y = 1

where y(1) = 1.

Question 3.1.6 Solve

(4x2 +2y2)dx+ xydy = 0

where y(1) = 2.
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Question 3.1.7 Find the general solutions of the second-order ordinary differ-
ential equations below.
(a) y′′+3y′+2y = 0, (b) y′′−2y′+ y = 0, (c) y′′+ y+1 = 0.

Question 3.1.8 Solve

y′′+3y′−4y = 0

where y(0) = 3, y′(0) =−2.

Question 3.1.9 Solve

y′′+4y′+8y = 0

where y(0) =−1, y′(0) = 4.

Question 3.1.10 Find an solution for

x2y′′+2xy′−2y = 0

Question 3.1.11 Solve

y′′+7y′+10y = 5x2 +7x+6

where y(0) = 1
2 , y′(0) = 3

2 .

Question 3.1.12 Solve

y′′+3y′+2y = 6ex

where y(0) = 2, y′(0) =−1.

Question 3.1.13 Solve

y′′+ y = sinx

where y(0) = 1, y′(0) = 1
2 . The method of Variation of Parameters may be ap-

plied. However, if we attempt this question by trial and error, notice that sinx is
already an solution of the complementary equation and vanishes upon substitu-
tion. Therefore, a better guess would be xsinx and xcosx instead.
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Question 3.1.14 In this chapter, we have seen about implicit differentiation, for
x and y related implicitly by a function f (x,y) = c, we have

d f =
∂ f
∂x

dx+
∂ f
∂y

dy = 0

dy
dx

=−∂ f
∂x

/
∂ f
∂y

Similarly for three variables, g(x,y,z) = c, we have, for example

∂ z
∂x

=−∂g
∂x

/
∂g
∂ z

where we keep y as a constant when computing ∂ z
∂x which is the response of z to

the change in x while moving along the curve g(x,y,z) = c. Prove that in this case

∂x
∂y

∂y
∂ z

∂ z
∂x

=−1

Question 3.1.15 Do Problem 13 and 16 in the section Miscellaneous Problems
for Chapter 1 of the textbook Differential Equations with Applications and His-
torical Notes (3rd Edition).

Question 3.1.16 A free falling object subjected to air resistance can be modelled
to have an acceleration of

dv
dt

= g− cv

where c is a constant representing the extent of air resistance and has a unit of s−1.
Express the velocity v as well as the downward displacement s =

´
vdt in terms

of the time elapsed t since released from rest. If the object reaches 90% of the
terminal speed at t = 100s, find the value of c. How about if the acceleration is in
the form of

dv
dt

= g−bv2

instead where b has a unit of m−1?
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Question 3.1.17 A chemical tracer P decays into another tracer Q, which in turn
reacts to produce another product R. Both reactions are first-order, and hence have
rate laws in form of

d[P]
dt

=−k1[P]

d[Q]

dt
= k1[P]− k2[Q]

d[R]
dt

= k2[Q]

Initially, [P] = 1 and [Q] = [R] = 0. Express the concentrations of all tracers in
terms of t. Find the time tQ where [Q] reaches maximum in terms of k1, k2. Briefly
describe what happens to tQ if k1 is much greater or smaller than k2.

Question 3.1.18 Two armies A and B fight on a battlefield. The evolution of the
combat can be described by a system of differential equations using Lanchester’s
Law. Assume their attacking power can be described linearly by some constants
kA, kB, then we have the dealt damages as

d[A]
dt

=−kB[B]

d[B]
dt

=−kA[A]

If army A has 30000 men, army B has 20000 men, kA = 1000h−1, kB = 2500h−1,
determine which army would be eliminated first. At what time does this occur?
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4.1 INTRODUCTION

4.1.1 VECTOR GEOMETRY

Vectors Vectors are mathematical objects that have magnitude and direction,
resembling an arrow. A vector is represented by a tuple of numbers, like (1,2,3)
and (4,6,3,3). Each of those numbers are the components of the vector and their
amount determines the number of dimension. For example, the vector (4,6,3,3)
is 4-dimensional. A vector is denoted by an arrow symbol or a bold letter, like ~v
and v.

x

y
~v = (1,2)

x = 1

y = 2

O

A 2D vector in the x-y plane.

Vector Addition, Subtraction, and Scalar Multiplication Vector addition and
subtraction is element-wise. This means that we add/subtract the corresponding
components each by each. It also implies that such operations are only valid for
vectors having the same dimension. Multiplying a scalar to a vector means all
components are multiplied by that scalar. Subtraction then can be viewed as addi-
tion with a (-1) factor.

Here are some notable properties of vector addition and subtraction.

~u+~v =~v+~u Commutative property of vector addition
−~u = (−1)~u

(~u+~v)+~w =~u+(~v+~w) Associative property of vector addition

Example 4.1.1 Let~u = (1,−1,2),~v = (1,3,3). Find~u+~v and~u−~v.

~u+~v = (1,−1,2)+(1,3,3)
= (1+1,−1+3,2+3)
= (2,2,5)
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~u−~v = (1,−1,2)− (1,3,3)
= (1−1,−1−3,2−3)
= (0,−4,−1)

Vector Addition (red+blue) and Subtraction (red-blue) visualized. The results are
the green vectors.

Example 4.1.2 Let~u = (3,1,2),~v = (1,2,0). Find 2~u−3~v.

2~u−3~v = 2(3,1,2)−3(1,2,0)
= (6,2,4)− (3,6,0)
= (6−3,2−6,4−0)
= (3,−4,4)

Standard Unit Vectors Vectors can be decomposed into standard unit vectors
which are vectors of length 1 along the positive direction of the axes. In 2-
dimensional and 3-dimensional space, we usually denote them as î, ĵ, k̂ corre-
sponding to x-axis, y-axis, and z-axis respectively. For instance, (3,2,9) can be
written as

3(1,0,0)+2(0,1,0)+9(0,0,1) = 3î+2 ĵ+9k̂
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Standard Unit Vectors along the axes.

Length of a Vector, Direction Length, or called norm, of a vector, denoted by
||, is found by generalizing Pythagora’s Theorem. It is evaluated as the square root
of the sum of squares of each components. Direction of a vector is simply its unit
vector, which is the original vector divided by its length. Unit vector is usually
written with the arrow symbol replaced by a hat .̂

Example 4.1.3 Find the length and unit vector of~v = (5,3,1,1).

|~v|=
√

52 +32 +12 +12

=
√

36
= 6

v̂ =
~v
|~v|

=
1
6
(5,3,1,1)

= (
5
6
,
3
6
,
1
6
,
1
6
)

Vector Products There are two types of vector product. One is dot product,
which takes two vectors and produce a scalar. Another is cross product, which
also takes two vectors but produce a new vector.

Dot Product Dot Product is the sum of products of the corresponding compo-
nents between two vectors, denoted by~u ·~v. By definition, the length of a vector~v
can be written as

√
~v ·~v.
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Example 4.1.4 Find the dot product between~u = (1,2,3) and~v = (4,5,6).

~u ·~v = (1,2,3) · (4,5,6)
= (1)(4)+(2)(5)+(3)(6)
= 32

Property of Dot Product Some important properties of dot product are listed
below.

~u ·~v =~v ·~u Commutative Law of Dot Product
~u · (~v+~w) =~u ·~v+~u ·~w Distributive Law of Dot Product
~u · (~v−~w) =~u ·~v−~u ·~w
(~u+~v) ·~w =~u ·~w+~v ·~w
(~u−~v) ·~w =~u ·~w−~v ·~w

Example 4.1.5 Verify ~u · (~v+ ~w) = ~u ·~v+~u · ~w, for ~u = (1,2,1), ~v = (0,1,1),
~w = (1,1,3).

~u · (~v+~w) = (1,2,1) · ((0,1,1)+(1,1,3))
= (1,2,1) · (1,2,4)
= (1)(1)+(2)(2)+(1)(4)
= 9

~u ·~v+~u ·~w = (1,2,1) · (0,1,1)+(1,2,1) · (1,1,3)
= ((1)(0)+(2)(1)+(1)(1))+((1)(1)+(2)(1)+(1)(3))
= 3+6
= 9 =~u · (~v+~w)

Example 4.1.6 Prove cosine law by vector notation for the triangle with side
lengths of a, b, c.

c2 = |~c|2 = |(~a−~b)|2

= (~a−~b) · (~a−~b)
=~a ·~a−~b ·~a−~a ·~b+~b ·~b Distributive Law of Dot Product

= |~a|2 + |~b|2−2~a ·~b Commutative Law of Dot Product

= |~a|2 + |~b|2−2|~a||~b|cosθ

= a2 +b2−2abcosθ
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Geometric Meaning of Dot Product Dot product is related to the angle be-
tween the two input vectors by

~u ·~v = |~u||~v|cosθ

Then the dot product between a vector and itself is~v ·~v = |~v|2. If the input vectors
are perpendicular, then its dot product is zero. Moreover, by Cauchy-Schwarz
Inequality, we have

−1≤ ~u ·~v
|~u||~v|

= cosθ ≤ 1

Hence θ in the cosine is always defined as a real number. Furthermore, the length
of projection of~u onto~v is given by

|projv~u|=
~u ·~v
|~v|

The projection vector is then

projv~u =
~u ·~v
|~v|

v̂ =
~u ·~v
|~v|2

~v

where we use the relation about unit vector v̂ = ~v
|~v| .

Projection of~u onto~v indicated by the blue line.

Example 4.1.7 Prove ~u = (1,2,4) and ~v = (2,1,−1) are perpendicular to each
other.

~u ·~v = (1,2,4) · (2,1,−1)
= (1)(2)+(2)(1)+(4)(−1)
= 0

Since their dot product is zero, they are perpendicular to each other.
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Example 4.1.8 Find the angle between~u = (−1,−2,3) and~v = (4,0,4).

cosθ =
~u ·~v
|~u||~v|

=
(−1)(4)+(−2)(0)+(3)(4)

(
√

(−1)2 +(−2)2 +(3)2)(
√
(4)2 +(0)2 +(4)2)

=
8√
448

=
1√
7

Therefore, θ = 67.8◦.

Example 4.1.9 Find the projection vector of~u = (1,4,6) onto~v = (2,−3,5). Alternative: Find
v̂ first then com-
pute ~u·~v

|~v| v̂.
projv~u =

~u ·~v
|~v|2

~v

=
(1,4,6) · (2,−3,5)
(2,−3,5) · (2,−3,5)

(2,−3,5)

where we use the formula |~v|=
√
~v ·~v, next

projv~u =
(1)(2)+(4)(−3)+(6)(5)
(2)(2)+(−3)(−3)+(5)(5)

(2,−3,5)

=
20
38

(2,−3,5)

= (
20
19

,
−30
19

,
50
19

)

Cross Product Cross Product produces a 3D vector which is perpendicular to
the two input 3D vectors, the direction of which is determined by the right-hand
rule. For ~u = (u1,u2,u3) and ~v = (v1,v2,v3), the cross product is given by the
determinant

~u×~v =
î ĵ k̂

u1 u2 u3
v1 v2 v3
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Moreover, we have î× ĵ = k̂, ĵ× k̂ = î, k̂× î = ĵ.

Left: Demonstration of the Right-Hand Rule. (From Wikipedia) Right: Short-cut
for Calculating 3× 3 Determinant. Computation of 2× 2 Determinant follows
similar rule.

Example 4.1.10 Find the cross product of ~u = (2,1,1) and ~v = (−1,−1,2).
Also verify that the resultant vector is perpendicular to~u and~v respectively.

~u×~v =
î ĵ k̂
2 1 1
−1 −1 2

= ((1)(2)î+(1)(−1) ĵ+(2)(−1)k̂)− ((1)(−1)î+(2)(2) ĵ+(1)(−1)k̂)

= 3î−5 ĵ− k̂ = (3,−5,−1)

(~u×~v) ·~u = (3,−5,−1) · (2,1,1)
= (3)(2)+(−5)(1)+(−1)(1)
= 0

Therefore, the vector produced from cross product is perpendicular to ~u. Similar
goes for~v.

Property of Cross Product Some important properties of dot product are listed
below.

~u×~v =−~v×~u Anti-commutative Law of Dot Product
~u× (~v+~w) =~u×~v+~u×~w Distributive Law of Dot Product
~u× (~v−~w) =~u×~v−~u×~w
(~u+~v)×~w =~u×~w+~v×~w
(~u−~v)×~w =~u×~w−~v×~w

It should be noted that it is generally not true that (~u×~v)×~w =~u× (~v×~w).
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Example 4.1.11 Verify~u×(~v+~w) =~u×~v+~u×~w, for~u= (1,1,2),~v= (1,0,1),
~w = (−1,1,0).

~u× (~v+~w) = (1,1,2)× ((1,0,1)+(−1,1,0))
= (1,1,2)× (0,1,1)

=
î ĵ k̂
1 1 2
0 1 1

=−î− ĵ+ k̂ = (−1,−1,1)

~u×~v+~u×~w = (1,1,2)× (1,0,1)+(1,1,2)× (−1,1,0))

=
î ĵ k̂
1 1 2
1 0 1

+
î ĵ k̂
1 1 2
−1 1 0

= (î+ ĵ− k̂)+(−2î−2 ĵ+2k̂)

=−î− ĵ+ k̂ = (−1,−1,1) =~u× (~v+~w)

Geometric Meaning of Cross Product Similar to dot product, cross product
has its own geometric interpretation. The relation between the magnitude of cross
product and the angle between the two input vectors are given as

|~u×~v|= |~u||~v|sinθ

which is also the area of parallelogram formed by ~u and~v. By extension, the area
of triangle formed by~u and~v is 1

2 |~u×~v|.

Cross Product and Area of Parallelogram.

Another observation is that if the two input vectors are parallel, the cross prod-
uct returns a zero vector.
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Example 4.1.12 Prove sine law by vector notation for the triangle with side
lengths of a, b, c and angles α , β , γ .

Area of the triangle can be expressed by three different cross products as below

1
2
|~a×~b|= 1

2
|~b×~c|= 1

2
|~c×~a|

Then, we have

|~a||~b|sinγ = |~b||~c|sinα = |~c||~a|sinβ

Dividing the equation by abc. we now have

sinα

a
=

sinβ

b
=

sinγ

c

Triple Scalar Product The triple scalar product of ~u,~v and ~w is ~u · (~v×~w). Its
absolute value is the volume of the parallelepiped formed by the three vectors.

A quick way to obtain the triple scalar product is to compute the determinant

~u · (~v×~w) =
u1 u2 u3
v1 v2 v3
w1 w2 w3

Triple Scalar Product and Volume of Parallelepiped.

Example 4.1.13 Find the volume of the parallelepiped formed by ~u = (1,0,1),
~v = (1,1,2), ~w = (3,2,5).
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The volume is computed from the triple scalar product as

~u · (~v×~w) =
1 0 1
1 1 2
3 2 5

= (1)(1)(5)+(1)(1)(2)+(0)(2)(3)
− (1)(1)(3)− (0)(1)(5)− (1)(2)(2)
= 0

The triple scalar product vanishes, which means that these three vectors are co-
planar, i.e. lying on the same plane.

Line and Plane The equations of line and plane in 2D and 3D space are related
to their normal vectors. If the normal vector of the line and plane are aî+b ĵ and
aî+b ĵ+ck̂ respectively, then the equation must be in the form of ax+by = k and
ax+ by+ cz = k. The reverse is also true. It can be readily seen in the example
below.

Example 4.1.14 Find the equation of the plane with a normal vector of 3î+4 ĵ+
5k̂, given that the plane passes through the point (1,2,6).

Any vector lying on the plane would be perpendicular to the normal vector. We
can express such vector by (x− 1)î+(y− 2) ĵ+(z− 6)k̂ where x,y,z lies on the
plane. Then, we have

((x−1)î+(y−2) ĵ+(z−6)k̂) · (3î+4 ĵ+5k̂) = 0
3(x−1)+4(y−2)+5(z−6) = 0

3x+4y+5z = 41

whose coefficients are seen to be determined by the normal vector.

Distance of Point to Plane Distance of a point to a plane is the projection of the
vector which connects the plane to the point, onto the normal vector of the plane.
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Distance of point P to the plane is indicated by yellow color (projection of green
vector onto red vector). Meanwhile the black line is the distance of point P to the
straight line along the N̂ direction.

Example 4.1.15 Find the distance of the point (2,3,5) to the plane x+2y+3z =
6.

From the equation of the plane, it can be inferred that its normal vector is î+2 ĵ+
3k̂. Now we can choose any point on the plane, like (1,1,1). The required distance
is then the projection of the vector ~P = (2−1)î+(3−1) ĵ+(5−1)k̂ = î+2 ĵ+4k̂
onto the plane’s normal vector ~N = î+2 ĵ+3k̂.

|projN~P|=
~P ·~N
|~N|

=
(î+2 ĵ+4k̂) · (î+2 ĵ+3k̂)

|î+2 ĵ+3k̂|

=
(1)(1)+(2)(2)+(4)(3)√

12 +22 +32

=
17√
14
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4.1.2 VECTOR CALCULUS

Vector Parameterization Components of a vector can be some functions of a
parameter such that as the parameter changes, the vector traces a curve in the
space. This technique is called parameterization, which can be used to represent
curves that are impossible to be described by a single equation.

Example 4.1.16 Find a parameterization for the line segment connecting (−1,1,5)
to (3,−1,3).

The vector connecting these two points is ~v = (3− (−1))î+ (−1− 1) ĵ + (3−
5)k̂) = 4î−2 ĵ−2k̂. For any point (x,y,z) on the line segment, the vector between
(x,y,z) and the given initial point (x0,y0,z0) = (−1,1,5) would be parallel to ~v.
Hence the line can be represented by Alternative: Use

(3,−1,3) instead
of (−1,1,5) for
derivation, with a
different range of
t.

(x,y,z)− (x0,y0,z0) = t~v
(x,y,z) = (−1,1,5)+ t(4,−2,−2)

= (−1+4t,1−2t,5−2t)

where 0 < t < 1. If it is an infinitely long straight line passing through these two
points rather than a segment, we have −∞ < t < ∞.

parameterization of a line segment, as t increases, the blue vector t~v extends along
the v̂ direction and the green vector traces a straight line as indicated by the big
grey arrow.

It is worthy to note that similar to the fact that a curve can be parameterized by
one parameter, a surface can be parameterized by two parameters.

103



Chapter 4 - Vector / Vector Calculus Handbook of Earth Science

Example 4.1.17 If the line segment in Example 4.1.16 is extended to an in-
finitely long straight line, find the distance of the point (1,1,1) to the line.

We consider the vector linking any point on the straight line, let’s say (−1,1,5),
to the point (1,1,1) in question. The projection of this vector ~u = (1,1,1)−Alternative: Con-

sider a plane
with a normal
(4,−2,−2) and
find the corre-
sponding plane
equation so that
(1,1,1) lies on
it. Subsequently,
find the intersec-
tion between the
line and the plane.

(−1,1,5) = (2,0,−4), onto any vector parallel to the direction of the line, like
~v = (4,−2,−2) we have found above, is

projv~u =
u · v
|~v|2

~v

=
(2,0,−4) · (4,−2,−2)

42 +(−2)2 +(−2)2 (4,−2,−2)

=
16
24

(4,−2,−2)

= (
8
3
,−4

3
,−4

3
)

The displacement of the point from the line is then represented by (2,0,−4)−
(8

3 ,−
4
3 ,−

4
3) = (−2

3 ,
4
3 ,−

8
3). Hence the distance is

√(
−2

3

)2
+
(4

3

)2
+
(
−8

3

)2
=

√
84
3 .

Example 4.1.18 Find a parameterization scheme for the ellipse x2

22 +
y2

32 = 1.

To do this we utilize the commonly used trigonometric identity,Alternative: Let
x = 2sin t and
y = 3cos t such
that the ellipse is
still traced but at
a different start-
ing point and in
reverse direction.
Alternative: Re-
place t by kt
where k is a
constant, chang-
ing the speed of
moving along the
ellipse.

sin2
θ + cos2

θ = 1

It is apparent that if we let x = 2cos t, y = 3sin t, then the equation automatically
satisfy the identity. Hence we have (x,y) = (2cos t,3sin t). This would trace the
ellipse in an anti-clockwise direction. The readers can convince themselves by
graphing the vector with increasing value of t.

Example 4.1.19 Use a single equation to relate the parameterized variables x =
2t +3 and y = 4t2 +1.

x = 2t +3

t =
x−3

2
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Substituting this into y = 4t2 +1, we have

y = 4
(

x−3
2

)2

+1

= (x−3)2 +1

= x2−6x+10

Displacement, Velocity, Acceleration Vectors Any vector representing the po-
sition, or the displacement of an object, expressed in functions of time t, such as
~s(t) = (x,y,z) = (t,2t, t2), can be differentiated component by component to ob-
tain the velocity vector. This is very similar to what we have seen in the last part
of Chapter 2 but generalized to vectors. Acceleration vector can be produced from
the velocity vector by the same manner.

On the other hand, integrating the components each by each turns an accelera-
tion vector to a velocity vector, and a velocity vector to a displacement vector.

Example 4.1.20 Given that the velocity of an object is~v = 3t î+4t2 ĵ+5k̂. Find
its acceleration and displacement.

Displacement is found by Common mistake:
Forgetting to in-
clude the integra-
tion constants.

~s =
ˆ
~vdt

=

ˆ
3tdtî+

ˆ
4t2dt ĵ+

ˆ
5dtk̂

= (
3
2

t2 +Cx)î+(
4
3

t3 +Cy) ĵ+(5t +Cz)k̂

While acceleration is found by

~a =
d~v
dt

=
d(3t)

dt
î+

d(4t2)

dt
dt ĵ+

d(5)
dt

k̂

= 3î+8t ĵ

Example 4.1.21 Prove that centripetal acceleration of a circular motion is given
by rω2 where r is the radius and ω is the angular frequency.
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One of the possible parameterization for such circular motion is

x = r cos(ωt−θ)

y = r sin(ωt−θ)

~s = (x,y) = r(cos(ωt−θ),sin(ωt−θ))

where θ is some constant phase angle.

Acceleration~a is found by differentiating~s twice, which gives us

~a =
d2~s
dt

= r(−ω
2 cos(ωt−θ),−ω

2 sin(ωt−θ))

=−rω
2(cos(ωt−θ),sin(ωt−θ)) =−ω~s

The magnitude of acceleration is then

|~a|=
√

(−rω2 cos(ωt−θ))2 +(−rω2 sin(ωt−θ))2

= rω
2
√

cos(ωt−θ))2 + sin(ωt−θ))2 = rω
2

Arc Length of a Curve The arc length of a parameterized curve, or in other
words, the distance travelled by the position vector along the path, from t = a to
t = b, by Pythagora’s Theorem, is

ˆ √
dx2 +dy2 +dz2 =

ˆ b

a

√(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2

dt

Notice that

~v =
d~s
dt

=
dx
dt

î+
dy
dt

ĵ+
dz
dt

k̂

we can rewrite the integral as ˆ b

a
|~v|dt

Example 4.1.22 Find the arc length of the curve x = 1, y =
√

t, z = t, from t = 0
to t = 4.

~v =
dx
dt

î+
dy
dt

ĵ+
dz
dt

k̂

=
d(1)
dt

î+
d(
√

t)
dt

ĵ+
d(t)
dt

k̂

=
1

2
√

t
ĵ+ k̂
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Thus, the arc length is

ˆ 4

0
|~v|dt =

ˆ 4

0

√
(

1
2
√

t
)2 +(1)2dt

=

ˆ 4

0

√
1
4t

+1dt

=

ˆ 4

0

√
1+4t
2
√

t
dt

Let u =
√

t, then du = 1
2
√

t dt, it becomes

ˆ 2

0

√
1+4u2du

Now let u = 1
2 tanθ , du = 1

2 sec2 θdθ , it becomes

ˆ u=2

u=0

√
1+ tan2 θ(

1
2

sec2
θdθ) =

1
2

ˆ u=2

u=0
sec3

θdθ

where the integral is calculated as

ˆ
sec3

θdθ =

ˆ
secθd(tanθ)

= [secθ tanθ ]−
ˆ

tanθd(secθ)

= [secθ tanθ ]−
ˆ

secθ tan2
θdθ

= [secθ tanθ ]−
ˆ

secθ(sec2
θ −1)dθ

= [secθ tanθ ]−
ˆ

sec3
θdθ +

ˆ
secθdθ
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So we have

2
ˆ

sec3
θdθ = [secθ tanθ ]+

ˆ
secθdθ

ˆ
sec3

θdθ =
1
2
[secθ tanθ ]+

1
2

ˆ
secθdθ

=
1
2
[secθ tanθ ]+

1
2

ˆ
secθ

secθ + tanθ

secθ + tanθ
dθ

=
1
2
[secθ tanθ ]+

1
2

ˆ
sec2 θ + secθ tanθ

secθ + tanθ
dθ

=
1
2
[secθ tanθ ]+

1
2

ˆ
1

secθ + tanθ
d(secθ + tanθ)

=
1
2
[secθ tanθ ]+

1
2
[ln |secθ + tanθ |]

Changing back the variable to u, it becomes
ˆ

sec3
θdθ =

1
2
[
√

1+4u2(2u)]+
1
2
[ln |
√

1+4u2 +2u|]

Therefore, the required arc length is

ˆ 2

0

√
1+4u2du =

1
2

(
1
2
[2u
√

1+4u2]20 +
1
2
[ln |2u+

√
1+4u2|]20

)
=
√

17+
1
4

ln(4+
√

17)

Del operator Del operator is a crucial element of vector calculus. It can be
regarded as a vector consisted of partial derivative operators. In 3D it is ∇ =(

∂

∂x ,
∂

∂y ,
∂

∂ z

)
. Later on, we would see how it interacts with functions and vectors

to produce gradient, divergence, and curl.

Gradient and Directional Derivative Gradient of a function f (x,y,z) is de-
noted as ∇ f , which is a vector

(
∂ f
∂x ,

∂ f
∂y ,

∂ f
∂ z

)
pointing towards the direction of

greatest increase in f , hence comes its name. Directional Derivative is the rate of
change of the function f in the direction ŝ, and is calculated as ∇ f · ŝ, which, upon
expansion, resembles Chain Rule for multiple variables.

Another property is that for a curve f (x,y) = c or surface f (x,y,z) = c, its gradient
vector is always normal to the curve or surface.
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Example 4.1.23 Find the gradient of the function f (x,y)= 2x2+3ycosy. Specif-
ically, calculate the gradient at (π,π), as well as the directional derivative along
the direction ŝ =

√
3

2 î+ 1
2 ĵ.

∇ f =
∂ f
∂x

î+
∂ f
∂y

ĵ

= 4xî+3(cosy− ysiny) ĵ

At (π,π), ∇ f = 4π î−3 ĵ. Hence the direction of greatest increase in f is the unit
vector 1√

(4π)2+32
(4π,3), and the directional derivative along ŝ =

√
3

2 î+ 1
2 ĵ is

∇ f · ŝ = (4π î−3 ĵ) · (
√

3
2

î+
1
2

ĵ)

= 2
√

3π− 3
2

Example 4.1.24 Find a normal vector for the ellipsoid f (x,y,z) = x2 + 2y2 +
z2 = 4 at (1,1,1).

∇ f = 2xî+4y ĵ+2zk̂

∇ f = 2î+4 ĵ+2k̂ at (1,1,1), so (2,4,2) is one of the possible normal vectors.

Vector Field, Divergence, Curl A vector field consisted of vectors, each as-
signed to a point across the space. Real-life examples are wind field and elec-
tric field. In three-dimensional setting, it is in the form of ~F = M(x,y,z)î +
N(x,y,z) ĵ + P(x,y,z)k̂ where M(x,y,z), M(x,y,z), M(x,y,z) are functions of x,
y, z. Its property can be characterized by its divergence and curl.

An example vector field ~F =−yî+(x− y) ĵ.

Divergence is ∇ · ~F = ∂M
∂x + ∂N

∂y + ∂P
∂ z . Positive divergence means the net flux is
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leaving and negative implies the net flux is entering.

Curl is ∇×~F , which expressed in determinant form, is

î ĵ k̂
∂

∂x
∂

∂y
∂

∂ z
M N P

= (Py−Nz)î+(Mz−Px) ĵ+(Nx−My)k̂

It outputs a vector which indicated the local tendency of rotation according to the
right-hand grip rule. For two-dimensional vector fields, only the k̂ component ex-
ists.

Demonstration of Right-Hand Grip Rule. The thumbs points in the direction of
curl. (From Wikipedia)

Example 4.1.25 Find the divergence and curl of the vector field ~F = Mî+N ĵ,
where M(x,y) = x−3y, N(x,y) = 3x+ y.

∇ ·~F =
∂M
∂x

+
∂N
∂y

=
∂ (x−3y)

∂x
+

∂ (3x+ y)
∂y

= 1+1 = 2

∇×~F =

î ĵ k̂
∂

∂x
∂

∂y
∂

∂ z
M N P

=

î ĵ k̂
∂

∂x
∂

∂y
∂

∂ z
x−3y 3x+ y 0

= (
∂ (3x+ y)

∂x
− ∂ (x−3y)

∂y
)k̂

= (3− (−3))k̂ = 6k̂
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Positive divergence and curl means that the flux is outgoing and there is an anti-
clockwise rotation throughout the region.

Example 4.1.26 Find the divergence and curl of the vector field ~F = (sinx)yzî+
xy2z2 ĵ+(x+ y)e−z2

k̂.

∇ ·~F =
∂ ((sinx)yz)

∂x
+

∂ (xy2z2)

∂y
+

∂ (x+ y)e−z2

∂ z

= (cosx)yz+2xyz2−2(x+ y)ze−z2

∇×~F =

î ĵ k̂
∂

∂x
∂

∂y
∂

∂ z

(sinx)yz xy2z2 (x+ y)e−z2

= (
∂ ((x+ y)e−z2

)

∂y
− ∂ (xy2z2)

∂ z
)î+(

∂ ((sinx)yz)
∂ z

− ∂ ((x+ y)e−z2
)

∂x
) ĵ

+(
∂ (xy2z2)

∂x
− ∂ ((sinx)yz)

∂y
)k̂

= (e−z2
−2xy2z)î+((sinx)y− e−z2

) ĵ+(y2z2− (sinx)z)k̂

Laplacian Laplacian is the operator ∇2 = ∇ ·∇ which can be regarded as the
second-order derivative for a multi-dimensional function. For a function f (x,y,z),
∇2 f = ∇ ·∇ f = ∂ 2 f

∂x2 +
∂ 2 f
∂y2 +

∂ 2 f
∂ z2 is computed by first evaluating the gradient then

taking the divergence of the gradient.

Example 4.1.27 Evaluate the laplacian for f (x,y,z) = exyz.

∇
2 f = ∇ · (∇ f )

= ∇ · (exyzî+ exz ĵ+ exyk̂)
= exyz

Total Derivative and Local Derivative Recall Chain Rule for multiple vari-
ables, for a field quantity u(x,y,z, t) associated to a physical object depending on
time and space, we have

du
dt

=
∂u
∂ t

+
∂u
∂x

dx
dt

+
∂u
∂y

dy
dt

+
∂u
∂ z

dz
dt

=
∂u
∂ t

+~v ·∇u
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where du
dt is called the total derivative or material derivative, which is the rate of

change in u of the moving element being traced. On the other hand, ∂u
∂ t is the

local derivative, which is the rate of change in u locally at the fixed position. De-
scriptions using the total derivative and local derivative are called Lagrangian and
Eulerian respectively.

~v ·∇u = ∂u
∂x

dx
dt +

∂u
∂y

dy
dt +

∂u
∂ z

dz
dt is the advection term which accounts for the change

in u contributed by the movement of the element up or down the gradient.

Example 4.1.28 Given that a physical quantity u(x,y, t) is increasing every-
where at a rate of 3 per second. And its gradient ∇u is î− 2 ĵ per meter. If an
element moves towards the south east at 4 ms−1, find the rate of change in u fol-
lowing the element.

This requires us to find the total derivative for the element. The velocity of the
element is

~v = 4v̂ = 4(
1√
2

î− 1√
2

ĵ) = 2
√

2î−2
√

2 ĵ

The local derivative is 3 per second everywhere, and hence the total derivative is
computed as

du
dt

=
∂u
∂ t

+~v ·∇u

= 3+(2
√

2î−2
√

2 ĵ) · (î−2 ĵ)

= 3+6
√

2

Example 4.1.29 A physical quantity u(x,y, t) tracing a moving object is chang-
ing at a rate of 5 per second. The object moves to the west at a speed of 3 ms−1

and the gradient of the field ∇u is−3î+7 ĵ per meter. Find the local rate of change
in u at the instant.

Its material derivative is 5 per second. The local derivative is then

∂u
∂ t

=
du
dt
−~v ·∇u

= 5− (−3î) · (−3î+7 ĵ)
= 5−9 =−4
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4.1.3 LINE INTEGRAL AND MULTIPLE INTEGRAL

Line Integral A line integral is an integral integrated along a curve. Simple
integral like

´
f (x)dx can be viewed as line integral along the x-axis. To evaluate

such integral, we parameterize the path on which the integral is carried out, and
integrate in terms of the parameter. In three-dimensional case, it turns the line
integral into

ˆ
f (x,y,z)ds =

ˆ
f (t)

ds
dt

dt =
ˆ

f (t)

√(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2

dt

=

ˆ
f (t)|~v|dt

where ds is a small line segment along the path and equals to
√

dx2 +dy2 +dz2

Example 4.1.30 Integrate f (x,y) = x2y along the straight line y = 2x+ 3 from
(0,3) to (2,7).

We start with parameterizing the line, one of the possible choices that is x = t,
y = 2t +3, with 0 < t < 2. Then the integral is evaluated as

ˆ
f (x,y)ds =

ˆ 2

0
x2y
√

dx2 +dy2

=

ˆ 2

0
t2(2t +3)

√(
dx
dt

)2

+

(
dy
dt

)2

dt

=

ˆ 2

0
t2(2t +3)

√
12 +22dt

=
√

5
ˆ 2

0
2t3 +3t2dt

=
√

5[
1
2

t4 + t3]20

= 16
√

5

Example 4.1.31 Integrate f (x,y,z) = xy+ z along the curve consisting of two
sections, around the arc x2 + y2 = 1, z = 0 from (1,0,0) to (0,1,0), and a vertical
line from (0,1,0) to (0,1,1).

We parameterize the two sections, which are x = cosr, y = sinr where 0 < r < π

2 ,
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and x = 0, y = 1, z = t where 0 < t < 1. Then we calculate the two line integrals
as

I1 =

ˆ π

2

0
(cosr sinr+0)

√(
dx
dr

)2

+

(
dy
dr

)2

+

(
dz
dr

)2

dr

=

ˆ π

2

0
cosr sinr

√
(−sinr)2 +(cosr)2 +02dr

=

ˆ π

2

0
sinrd(sinr)

= [
1
2

sin2 r]
π

2
0

=
1
2

andAlternative: In-
tegrate

´
zdz di-

rectly.
I2 =

ˆ 1

0
((0)(1)+ t)

√
dx
dt

2
+

dy
dt

2
+

dz
dt

2
dt

=

ˆ 1

0
t
√

02 +02 +12dt

=

ˆ 1

0
tdt

= [
1
2

t2]10

=
1
2

Therefore, the required line integral is I1 + I2 =
1
2 +

1
2 = 1.

Line Integral - Revisited Another kind of line integral that is commonly seen
is

ˆ
~F ·d~s =

ˆ
~F · (dx,dy,dz) =

ˆ
~F ·
(

dx
dt

,
dy
dt

,
dz
dt

)
dt

In physics, it is usually used in work done calculation where the vector field is
a force field. Evaluation of such work done integral is similar to what we have
above.
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Example 4.1.32 For a helix parameterized as x = cos t, y = sin t, z = t
π

, 0 < t <
4π , find

´
~F ·d~s, where ~F = yî+ x ĵ+ ezk̂.

ˆ
~F ·d~s =

ˆ 4

0
(y,x,ez) · (dx

dt
,
dy
dt

,
dz
dt

)dt

=

ˆ 4

0
(sin t,cos t,e

t
π ) · (−sin t,cos t,

1
π
)dt

=

ˆ 4

0
(cos2 t− sin2 t +

1
π

e
t
π )dt

=

ˆ 4

0
(cos2t +

1
π

e
t
π )dt

=

[
1
2

sin2t + e
t
π

]4π

0

= e4−1

Conservative Field A vector field ~F is conservative if it can be written as ∇ f
for some function f (x,y,z). A conservative field has the property that, its work
done integral from point a to point b can be re-written as

ˆ b

a
~F ·d~s =

ˆ b

a
∇ f · (dx,dy,dz)

=

ˆ b

a
(
∂ f
∂x

,
∂ f
∂y

,
∂ f
∂ z

) · (dx,dy,dz)

=

ˆ b

a

∂ f
∂x

dx+
∂ f
∂y

dy+
∂ f
∂ z

dz

=

ˆ b

a
d f = f (b)− f (a)

where we have used Chain Rule for multiple variables. It means that the work
done integral only depends on the value of f (x,y,z) at a and b. Moreover, if the
work done integral is carried out along a closed loop, then it simply evaluates to
zero. A vector field is conservative if the curl is zero everywhere.

Example 4.1.33 Prove that ~F = y2z3î+2xyz3 ĵ+3xy2z2k̂ is a conservative field.
Find the work done integral from the point (1,1,2) to (1,2,4).
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To prove that it is a conservative field, it is enough to show that

∇×~F =

î ĵ k̂
∂

∂x
∂

∂y
∂

∂ z
y2z3 2xyz3 3xy2z2

=

(
∂ (3xy2z2)

∂y
− ∂ (2xyz3)

∂ z

)
î+
(

∂ (y2z3)

∂ z
− ∂ (3xy2z2)

∂x

)
ĵ

+

(
∂ (2xyz3)

∂x
− ∂ (y2z3)

∂y

)
k̂

= (6xyz2−6xyz2)î+(3y2z2−3y2z2) ĵ+(2yz3−2yz3)k̂

=~0

To find a function f such ~F = ∇ f , we integrate the components as followsˆ
y2z3dx = xy2z3 +F(y,z)

ˆ
2xyz3dy = xy2z3 +G(x,z)

ˆ
3y2z2dx = xy2z3 +H(x,y)

We choose F = G = H = 0 such that f (x,y,z) = xy2z3. And the required work
done integral is

f (1,2,4)− f (0,1,2) = (1)(2)2(4)3− (1)(1)2(2)3

= 248

Multiple Integral Multiple integral is a type of integral that have more than one
integral signs, each integrated with respect to one variable. For two-dimensional
space, it is in the form of¨

f (x,y)dxdy =
¨

f (x,y)dA

where dxdy = dA is the area of a small rectangle with length dx and dy, which are
small segments along the x and y direction. For three-dimensional space, it is in
the form of ¨

f (x,y,z)dxdydz =
¨

f (x,y,z)dV

where dxdydz = dV is the volume of a small cuboid with length dx, dy and dz.
To evaluate such integral, we have to identify the limits or boundaries, which can
depend on other variables, and iterate from the innermost to the outermost integral.
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Example 4.1.34 Integrate
´ 2

1

´ 1
0

x
ydxdy inside the rectangle x = [0,1] and y =

[1,2]. Alternative: Inte-
grate with respect
to y first.ˆ 2

1

ˆ 1

0

x
y

dxdy =
ˆ 2

1

1
y

[
1
2

x2
]1

0
dy

=

ˆ 2

1

1
2y

dy

= [
1
2

lny]21 =
ln2
2

Example 4.1.35 Derive the formula for area of a triangle with sides length a and
b, with vertices at (0,0), (a,0), (0,b).

We evaluate the integral Alternative:
Evaluate´ a

0 y(x)dx where
y(x) = b − b

ax is
the altitude at x.

¨
f (x,y)dxdy =

¨
f (x,y)dA

with appropriate limits and f (x,y) = 1 such that it represents the integrated area
inside the triangle. To set up the limits, we need to find the equation of the line
connecting (a,0) to (0,b), which is x = a− a

by. If we choose to integrate with
respect to x first, then the limits of x are determined by y, specifically from x = 0 Alternative: Inte-

grate with respect
to y first, with the
limits from y =
0 to y = b − b

ax.
This is equivalent
to the alternative
suggested above.

to x = a− a
by.

Integration with respect to x then y in a triangular region.

117



Chapter 4 - Vector / Vector Calculus Handbook of Earth Science

Hence the area of the triangle is

ˆ b

0

ˆ a− a
b y

0
dxdy =

ˆ b

0
[x]

a− a
b y

0 dy

=

ˆ b

0
(a− a

b
y)dy

= [ay− a
2b

y2]b0

=
1
2

ab

Example 4.1.36 Integrate f (x,y) = x2 + y2 inside the circle x2 + y2 < 1.

As suggested in the previous examples, we can choose the order of integration
freely. As long as the integrand is continuous, the validity holds. This result is
called Fubini’s Theorem. We identify the limits depending on the order of inte-
gration, if we integrate along the x direction first, the limit of x should depend on
y and are ±

√
1− y2, and after integrating along x direction, the limit of y would

be simply ±1. Hence the integral is

ˆ 1

−1

ˆ √1−y2

−
√

1−y2
(x2 + y2)dxdy =

ˆ 1

−1

[
1
3

x3 + xy2
]√1−y2

−
√

1−y2
dy

=

ˆ 1

−1

2
3
(1− y2)

√
1− y2 +2y2

√
1− y2dy

Let y = sinθ , dy = cosθdθ , we have

ˆ 1

−1

(
2
3
(1− y2)

√
1− y2 +2y2

√
1− y2

)
dy

=

ˆ π

2

− π

2

(
2
3
(1− sin2

θ)
√

1− sin2
θ +2sin2

θ

√
1− sin2

θ

)
cosθdθ

=

ˆ π

2

− π

2

(
2
3

cos4
θ +2(1− cos2

θ)cos2
θ

)
dθ

=

ˆ π

2

− π

2

(
−4

3
cos4

θ +2cos2
θ

)
dθ
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However,
ˆ

cos4
θ =

ˆ
cos3

θd(sinθ)

= cos3
θ sinθ −

ˆ
sinθd(cos3

θ)

= cos3
θ sinθ +

ˆ
3sin2

θ cos2
θdθ

= cos3
θ sinθ +

ˆ
3(1− cos2

θ)θ cos2
θdθ

= cos3
θ sinθ +3

ˆ
cos2 dθ −

ˆ
3cos4

θdθ

Hence,
ˆ

cos4
θ =

1
4

cos3
θ sinθ +

3
4

ˆ
cos2

θ

and
ˆ

cos2
θ =

ˆ
1
2
(1+ cos2θ)dθ

=
1
2

θ +
1
4

sin2θ +C

Thus,

ˆ π

2

− π

2

(
−4

3
cos4

θ +2cos2
θ

)
dθ

=

[
−4

3
(
1
4

cos3
θ sinθ +

3
4
(
1
2

θ +
1
4

sin2θ))+2(
1
2

θ +
1
4

sin2θ)

] π

2

− π

2

=

[
−1

3
cos3

θ sinθ +
1
2

θ +
1
4

sin2θ

] π

2

− π

2

=
π

2

Example 4.1.37 Derive the volume of a pyramid with a square base of length a
and height h.

Similar to what we do for calculating area, we want to find
´ ´ ´

dxdydz with
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suitable limits, which are x = [−h−z
h

a
2 ,

h−z
h

a
2 ], y = [−h−z

h
a
2 ,

h−z
h

a
2 ] and z = [0,h],

thus we have

ˆ h

0

ˆ h−z
h

a
2

− h−z
h

a
2

ˆ h−z
h

a
2

− h−z
h

a
2

dxdydz =
ˆ h

0

ˆ h−z
h

a
2

− h−z
h

a
2

[x]
h−z

h
a
2

− h−z
h

a
2

dydz

=

ˆ h

0

ˆ h−z
h

a
2

− h−z
h

a
2

a
h− z

h
dydz

=

ˆ h

0
a

h− z
h

[y]
h−z

h
a
2

− h−z
h

a
2

dz

=

ˆ h

0
a2 (h− z)2

h2 dz

=

ˆ h

0
a2 (h

2−2zh+ z2)

h2 dz

= [a2(z− z2

h
+

z3

3h2 )]
h
0

=
1
3

a2h

Example 4.1.38 Find
´ 1

0

´ √1−z2

0

´√1−z2−y2

0 xyzdxdydz inside the part of a dome
located in the upper first quadrant as indicated by the limits.

ˆ 1

0

ˆ √1−z2

0

ˆ √1−z2−y2

0
xyzdxdydz =

ˆ 1

0

ˆ √1−z2

0
yz[

1
2

x2]

√
1−z2−y2

0 dydz

=

ˆ 1

0

ˆ √1−z2

0

1
2

yz(1− z2− y2)dydz

=

ˆ 1

0

ˆ √1−z2

0

1
2
(yz− yz3− y3z)dydz

=

ˆ 1

0
[
1
4

y2z− 1
4

y2z3− 1
8

y4z]
√

1−z2

0 dz

=

ˆ 1

0
(
1
8

z− 1
4

z3 +
1
8

z5)dz

= [
1

16
z2− 1

16
z4 +

1
48

z6]10

=
1

48
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Coordinate Transformation Sometimes we encounter multiple integrals that
is easier to be represented in another coordinate system. This raises the question
if we can do the integral in that coordinate system. Indeed, it is possible to do so,
with the help of the Jacobian determinant. If we can express x and y in terms of
new coordinates u and v, then the area differentials are related by

dxdy = |J|dudv

where

J =
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

For three dimensional coordinates it follows the same essence.

Example 4.1.39 Integrate f (x,y) = x + y in the square bound by y− x = 0,
y− x = 2, y+ x = 0, y+ x = 2.

The equations for the square suggests a transformation of u = y+ x, v = y− x, Alternative: Let
u = y− x, v = y+
x. Remember to
take the absolute
value of the Jaco-
bian.

which implies that x = u−v
2 and y = u+v

2 . The new limits are then u = [0,2] and
v = [0,2]. The Jacobian is

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

=
∂x
∂u

∂y
∂v
− ∂x

∂v
∂y
∂u

=
∂ (u−v

2 )

∂u
∂ (u+v

2 )

∂v
−

∂ (u−v
2 )

∂v
∂ (u+v

2 )

∂u

=

(
1
2

)(
1
2

)
−
(
−1

2

)(
1
2

)
=

1
2

Subsequently the integral becomes
¨

f (x,y)dxdy =
ˆ 2

0

ˆ 2

0
f (u, t)|J|dudv

=

ˆ 2

0

ˆ 2

0
(
u− v

2
+

u+ v
2

)|1
2
|dudv

=

ˆ 2

0

ˆ 2

0

1
2

ududv

=

ˆ 2

0
[
1
4

u2]20dv

=

ˆ 2

0
dv

= 2
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Example 4.1.40 Redo the integral in Example 4.1.36 by using polar coordinates.

Polar coordinates transformation is

x(r,θ) = r cosθ

y(r,θ) = r sinθ

r2 = x2 + y2

Hence the Jacobian determinant is
∂x
∂ r

∂x
∂θ

∂y
∂ r

∂y
∂θ

=
∂x
∂ r

∂y
∂θ
− ∂x

∂θ

∂y
∂ r

= (cosθ)(r cosθ)− (−r sinθ)(sinθ)

= r(cos2
θ + sin2

θ) = r

Thus the area differentials are related by

dA = dxdy = rdrdθ

Graphical Interpretation of the Area Differential in Polar Coordinates.

The limits for the circular region are r = [0,1] and θ = [0,2π]. The integral is
then calculated as ˆ 2π

0

ˆ 1

0
r2(rdrdθ) =

ˆ 2π

0

ˆ 1

0
r3rdrdθ

=

ˆ 2π

0
[
1
4

r4]10dθ

=
1
4

ˆ 2π

0
dθ

=
1
4
[θ ]2π

0

=
1
4
(2π) =

π

2
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Example 4.1.41 Integrate f (ρ) = 1
ρ

inside a sphere 0 < ρ < 1 where ρ is the
radial distance, with azimuth angle 0< θ < 2π and zenith angle 0< φ < π . Spher-
ical coordinates transformation is

x(ρ,θ ,φ) = ρ sinφ cosθ

y(ρ,θ ,φ) = ρ sinφ sinθ

z(ρ,θ ,φ) = ρ cosφ

The Jacobian determinant is therefore

∂x
∂ρ

∂x
∂θ

∂x
∂φ

∂y
∂ρ

∂y
∂θ

∂y
∂φ

∂ z
∂ρ

∂ z
∂θ

∂ z
∂φ

=
sinφ cosθ −ρ sinφ sinθ ρ cosφ cosθ

sinφ sinθ ρ sinφ cosθ ρ cosφ sinθ

cosφ 0 −ρ sinφ

=−ρ
2 sin3

φ(cos2
θ + sin2

θ)−ρ
2 sinφ cos2

φ(sin2
θ + cos2

θ)

=−ρ
2 sinφ(sin2

φ + cos2
φ)

=−ρ
2 sinφ

The volume differentials are related by

dV = dxdydz = |−ρ
2 sinφ |dρdθdφ = ρ

2 sinφdρdθdφ

As a result,
˚

1
ρ

dV =

ˆ
π

0

ˆ 2π

0

ˆ 1

0

1
ρ

ρ
2 sinφdρdθdφ

=

ˆ
π

0

ˆ 2π

0

ˆ 1

0
ρ sinφdρdθdφ

=

ˆ
π

0

ˆ 2π

0
[
1
2

ρ
2]10 sinφdθdφ

=

ˆ
π

0

ˆ 2π

0

1
2

sinφdθdφ

=

ˆ
π

0

1
2
[θ ]2π

0 sinφdφ

=

ˆ
π

0

1
2

2π sinφdφ

= π[−cosφ ]π0 = 2π

Cylindrical coordinates are similar to polar coordinates but with an extra z dimen-
sion, and an area differential of rdrdθdz.
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Surface Integral Similar to line integral, we have surface integral which inte-
grates a function on a surface. Two-dimensional surface in a three-dimensional
space can be explicitly defined as z = g(x,y), however there are other cases using
other coordinates, or an implicit equation. Surface integral of a function f (x,y,z)
is written as ¨

R
f (x,y,z)dS

where dS is called a surface element representing an infinitely small area on the
integration surface R. We would see how to obtain dS in the next example.

Example 4.1.42 Integrate f (x,y,z) = xyz, on the surface z = x+y with x = [1,2]
and y = [1,2].

We want to express dS, given that x increments by dx and y increments by dy.
If x increases by dx, then the surface vector moves by dxî+ ∂ z

∂xdxk̂ = (1,0,zx)dx
and similar for y we have dy ĵ+ ∂ z

∂ydyk̂ = (0,1,zy)dy.

Surface Element in terms of dx and dy on the x-y plane where the surface is pro-
jected onto.

Thus the area of the surface element is the magnitude of their cross product

(1,0,zx)dx× (0,1,zy)dy =
î ĵ k̂
1 0 zx
0 1 zy

dxdy

= (−zx î− zy ĵ+ k̂)dxdy
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which is
√

(−zx)2 +(−zy)2 +12dxdy=
√

z2
x + z2

y +1dxdy=
√

12 +12 +1dxdy=
√

3dxdy.

Alternatively, using the property of gradient,

dS =
|∇g|
|∇g · N̂|

dA

where g(x,y,z) = c defines the surface and N̂ is the unit normal vector of the
projection plane. In this question, g(x,y,z) = x+y−z = 0 and N̂ = k̂ if we choose
x-y plane as the projection plane, and thus

dS =
|∇g|
|∇g · k̂|

dxdy

=
|(1,1,−1)|

|(1,1,−1) · (0,0,1)|
dxdy

=
√

3dxdy

On the surface, f (x,y,z) = xyz = xy(x+ y). The integral is then

¨
R

f (x,y,z)dS =

ˆ 2

1

ˆ 2

1
xy(x+ y)

√
3dxdy

=

ˆ 2

1

ˆ 2

1

√
3(x2y+ xy2)dxdy

=

ˆ 2

1

√
3[

1
3

x3y+
1
2

x2y2]21dy

=

ˆ 2

1

√
3(

7
3

y+
3
2

y2)dy

=
√

3[
7
6

y2 +
1
2

y3]12

=
√

3[
7
6

y2 +
1
2

y3]12

= 7
√

3

Example 4.1.43 Integrate f (x,y,z) = x2 + yz on the parameterized diamond-
shaped surface x = u+ v, y = u− v, z = v−u, where 0 < u < 1 and 0 < v < 1.

Similar to the idea in previous example, we want to find how the surface vec-
tor moves when u and v changes by du and dv. They are ( ∂x

∂u ,
∂y
∂u ,

∂ z
∂u)du and
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(∂x
∂v ,

∂x
∂v ,

∂x
∂v)dv respectively. The magnitude of their cross product forms the sur-

face element as

dS = |(xu,yu,zu)× (xv,yv,zv)|dudv

In this case,

(xu,yu,zu)× (xv,yv,zv) =
î ĵ k̂
1 1 −1
1 −1 1

=−2 ĵ−2k̂

Thus the surface element is

dS =
√
(−2)2 +(−2)2dudv = 2

√
2dudv

And the integral is
ˆ 1

0

ˆ 1

0
((u+ v)2 +(u− v)(v−u))(2

√
2dudv)

=

ˆ 1

0

ˆ 1

0
8
√

2uvdudv

=

ˆ 1

0
8
√

2v[
1
2

u2]10dv

=

ˆ 1

0
4
√

2vdv

= 4
√

2[
1
2

v2]10

= 2
√

2

Surface Integral - Revisited Just like line integral, there exists another kind of
surface integral called the flux integral, which measures the net flux across a given
surface. For a vector field ~F and an oriented surface with a unit normal vector n̂
and surface element dS, the flux integral is

¨
R
~F · n̂dS =

¨
R
~F ·d~S

where ~F · n̂ gives the flux across the boundary per unit area. In two-dimensional
space, the flux integral retains the same form with dS replaced by ds refers to a
small line segment along the curve.
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Example 4.1.44 For a vertical plane x = 1, 0 < y < 3, 0 < z < 3 which is
oriented towards the positive x-direction, find the flux across the plane if ~F =
yzî+ xz ĵ+ xyk̂.

The oriented surface has a unit normal vector of (1,0,0) everywhere. Project
the surface onto the y-z plane, it is easy to see dS = dydz, thus we have

¨
R
~F · n̂dS =

ˆ 3

0

ˆ 3

0
(1,0,0) · (yz,xz,xy)dydz

=

ˆ 3

0

ˆ 1

0
yzdydz

=

ˆ 3

0
[
1
2

y2]30dz

=
9
2

ˆ 3

0
dz

=
9
2
[
1
2

z2]30

=
81
4

Example 4.1.45 For a surface z = x2+y2, within the circular region x2+y2 < 1,
find the flux under the vector field ~F = x

√
x2 + y2î+ y

√
x2 + y2 ĵ.

We follow the similar procedure of Example 4.1.42 and find n̂dS as Alternative: Use
the cross-product
method in Exam-
ple 4.1.42 to find
the normal vector,
which also gives
you n̂dS.

n̂dS =
∇g
|∇g · N̂|

dA

the only difference from the formula in Example 4.1.42 is that |∇g| becomes ∇g,
with g(x,y,z) = x2 + y2− z = 0. The formula in Example 4.1.42 finds dS but here
we want n̂dS. Using x-y plane as the projection plane, we have

n̂dS =
∇g
|∇g · k̂|

dxdy

=
(2x,2y,−1)

|(2x,2y,−1) · (0,0,1)|
dxdy

= (2x,2y,−1)dxdy

127



Chapter 4 - Vector / Vector Calculus Handbook of Earth Science

However, we want the upward direction being the positive direction, so we use
n̂dS = (−2x,−2y,1)dxdy instead. The integral is

¨
R
~F · n̂dS =

ˆ 1

−1

ˆ √1−y2

−
√

1−y2
(x
√

x2 + y2,y
√

x2 + y2,0) · (−2x,−2y,1)dxdy

=

ˆ 1

−1

ˆ √1−y2

−
√

1−y2
−2(x2 + y2)

√
x2 + y2dxdy

Using polar coordinates, it now becomes

ˆ 2π

0

ˆ 1

0
(−2r3)rdrdθ =

ˆ 2π

0

ˆ 1

0
−2r4drdθ

=

ˆ 2π

0
[−2

5
r5]10dθ

=

ˆ 2π

0
−2

5
dθ

=−2
5
[θ ]2π

0

=−4π

5

Green’s Theorem For line integral or flux integral along a closed loop in two
dimensional space, Green’s Theorem states that they can be re-written using curl
or divergence which allows easier computation, under the condition that the vector
field has continuous first partial derivatives. For a vector field ~F = Mî+N ĵ, the
curl form of Green’s Theorem for work done integral is

˛
C
~F ·d~s =

˛
C

Mdx+Ndy =
¨

R

(
∂N
∂x
− ∂M

∂y

)
dxdy

=

¨
R
(∇×~F) · k̂dxdy

with the work done integral carried out in anti-clockwise direction. Meanwhile
the divergence form of Green’s Theorem for flux integral is

˛
C
~F · n̂ds =

˛
C

Mdy−Ndx =
¨

R

(
∂M
∂x

+
∂N
∂y

)
dxdy

=

¨
R

∇ ·~Fdxdy
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where n̂ is the outward unit normal vector and the flux integral represents the out-
ward flux. Here

¸
C means integration along the closed loop C and R is the region

enclosed by C. This link gives an illustration of the curl form of Green’s Theorem.

We shall see that these two forms of Green’s Theorem are special cases for Stokes’
Theorem and Divergence Theorem which are to be discussed later.

Example 4.1.46 Find the work done integral along the closed loop x2 + y2 = 4
in anti-clockwise direction under ~F = Mî+N ĵ, where M = y2 and N = x2.

We apply the curl form of Green’s Theorem and obtain Alternative: Eval-
uate the line
integral directly
by using the
parameterization
x = 2cos t,
y = 2sin t,
0 < t < 2π .

˛
C
~F ·d~s =

¨
R

(
∂N
∂x
− ∂M

∂y

)
dxdy Green’s Theorem

=

ˆ 2

−2

ˆ 2
√

1−y2

−2
√

1−y2
(2x−2y)dxdy

Using polar coordinates, the integral becomes
ˆ 2π

0

ˆ 2

0
2(r cosθ − r sinθ)rdrdθ

If we choose to integrate with respect to θ first, it can be readily seen that the
integral is zero.

Example 4.1.47 Find the inward flux across the square x = [0,1], y = [0,1] with
~F = Mî+N ĵ, where M = 1− x and N = 1− y.

We apply the divergence form of Green’s Theorem and have the outward flux
as Alternative: Eval-

uate flux across
each edge and add
them up.

˛
C
~F · n̂ds =

¨
R

(
∂M
∂x

+
∂N
∂y

)
dxdy Green’s Theorem

=

ˆ 1

0

ˆ 1

0
(−1)+(−1)dxdy

=−2
ˆ 1

0

ˆ 1

0
dxdy

=−2

Since the question requires the inward flux, we add a negative sign and the answer
is 2. Common mistake:

Forgetting to take
into account of the
orientation.
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Stokes’ Theorem Stokes’ Theorem is an extension of the curl form of Green’s
Theorem, which says that for any work done integral along the closed loop C in
three-dimensional space, we have˛

C
~F ·d~s =

¨
R
(∇×~F) · n̂dS

where R can be any surface having C as the boundary and n̂ as its unit normal
vector with its direction determined by using the right-hand grip rule on the inte-
gration loop C. We would see how it works in the next example.

In addition, we see that if the curl is zero, then by Stokes’ Theorem the work
done integral along any closed loop would be zero, which constitutes a conserva-
tive field as we have discussed earlier.

Example 4.1.48 Integrate ~F = zî+ x ĵ + yk̂ as a work done integral along the
circle x2 + y2 = 1, z = 0, in anti-clockwise direction.

The curl is

∇×~F =

î ĵ k̂
∂

∂x
∂

∂y
∂

∂ z
z x y

= î+ ĵ+ k̂

For demonstration purpose, we choose the half-spherical surface g(x,y,z) = x2 +Alternative:
Simply use the
circular region
x2 + y2 < 1, z = 0.
This reduces
Stokes’ Theorem
into Green’s
Theorem.

y2 + z2 = 1, z > 0 to be used when applying Stokes’ Theorem, and project the
surface onto the x-y plane to do the integration, where the procedure can be refer-
enced from Example 4.1.42, and therefore we have˛

C
~F ·d~s =

¨
R
(∇×~F) · n̂dS Stokes’ Theorem

=

ˆ 1

−1

ˆ √1−y2

−
√

1−y2
(1,1,1) · ∇g

|∇g · k̂|
dxdy

=

ˆ 1

−1

ˆ √1−y2

−
√

1−y2
(1,1,1) · (2x,2y,2z)

2z
dxdy

=

ˆ 1

−1

ˆ √1−y2

−
√

1−y2
(
x
z
+

y
z
+1)dxdy

=

ˆ 1

−1

ˆ √1−y2

−
√

1−y2
(

x+ y√
1− x2− y2

+1)dxdy
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We use the fact that both x√
1−x2−y2

and y√
1−x2−y2

are odd functions and the inte-

gration region is symmetrical to eliminate them. Hence the integral is simply the
area of the circular region

ˆ 1

−1

ˆ √1−y2

−
√

1−y2
dxdy =

¨
R

dA = π

Example 4.1.49 Given that the curl of ~F = (z− y)î + (x− z) ĵ + (y− x)k̂ is
∇×~F = (2,2,2). Find the upward flux of any arbitrary surface that has a square
boundary −1 < x < 1, −1 < y < 1, z = 0 under the vector field ∇×~F = 2î+2 ĵ+
2k̂.

We should be careful that the vector field in question is ∇× ~F not ~F . Never-
theless, we can use Stokes’ Theorem to relate the upward flux under ∇× ~F and
line integral of ~F , which is¨

R
(∇×~F) · n̂dS =

˛
C
~F ·d~s Stokes’ Theorem

where left hand side is exactly what we want, but cannot compute directly due to Alternative: By
extension, use
Stokes’ Theorem
once more time
to relate the two
integrals to any
flux integral with
a fixed integration
surface chosen
freely.

the arbitrary nature of R, so we proceed to calculate the right hand side, which
gives us ˛

C
~F ·d~s =

˛
C
(z− y,x− z,y− z) ·d~s

Breaking the boundary into four edges, calculating the corresponding line integral
each by each along anti-clockwise direction, and adding them up gives the answer.
For the right edge where x = 1, z = 0, the line integral is

ˆ 1

−1
(−y,1,y) · (0,dy,0) =

ˆ 1

−1
dy = [y]1−1 = 2

The evaluation for other edges follow similar procedures, and the final answer is
2+2+2+2 = 8.

Divergence Theorem Divergence Theorem is a generalzed version of the diver-
gence form of Green’s Theorem, which states that the outward flux integral across
a closed surface R is related to the divergence by‹

R
~F · n̂dS =

˚
D

∇ ·~FdV

where D is the volume enclosed by the surface. If the divergence is zero every-
where, then the flux across any closed surface would also be zero.
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Example 4.1.50 Find the outward flux across the cylinder x2+y2 = 4, 0 < z < 3
under the vector field ~F = 2xî+ 5y ĵ+ 8zk̂. Also, find the flux across the curved
surface of the cylinder.

The divergence is

∇ ·~F =
∂ (2x)

∂x
+

∂ (5y)
∂y

+
∂ (8z)

∂ z
= 2+5+8 = 15

Hence by Divergence Theorem the required outward flux is‹
R
~F · n̂dS =

˚
D

∇ ·~FdV Divergence Theorem

= 15
˚

D
dV

where
˝

D dV = π(2)2(3) = 12π is simply the volume of the cylinder and thus
the outward flux across the cylinder is 180π .

The flux across the curved surface can be found by subtracting the flux acrossAlternative:
Compute the
flux across the
curved surface by
using cylindrical
coordinates.

the cylinder by the outward fluxes on the top and bottom. Outward flux on the
bottom z = 0 is ¨

bottom
(2xî+5y ĵ+8(0)k̂) · (0,0,−1)dA = 0

Meanwhile the outward flux on the top z = 3 is¨
top

(2xî+5y ĵ+8(3)k̂) · (0,0,1)dA =

¨
top

24πdA

= 24(π(2)2) = 96π

Thus the flux across the curved surface is 180π−96π = 84π .

Example 4.1.51 Find ‹
R
(x2 +2y2 +3z2)dS

on the spherical surface x2 + y2 + z2 = 1 of radius 1.

Notice that the unit outward normal vector of the spherical surface is simply
(x,y,z). Then we are able to rewrite the integral as‹

R
~F · n̂dS =

‹
R
(xî+2y ĵ+3zk̂) · (xî+ y ĵ+ zk̂)dS
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then by Divergence Theorem, we have Alternative: Eval-
uate the surface
integral directly
by breaking the
surface into upper
half and lower
half.

‹
R
(xî+2y ĵ+3zk̂) · n̂dS =

˚
D

∇ · (xî+2y ĵ+3zk̂)dV Divergence Theorem

= 6
˚

D
dV

= 6(
4
3

π(1)3) = 8π

It is noted that both Stokes’ Theorem and Divergence Theorem can only be ap-
plied if the first partial derivatives of the vector field are continuous as for Green’s
Theorem.
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4.1.4 MISCELLANEOUS

Helmholtz’s Theorem Helmholtz’s Theorem is a crucial result in vector calcu-
lus which states that, a smooth vector field can be decomposed into

~F = ∇φ +∇×~A

if the divergence and curl of ~F tends to zero when approaching infinity distance. A
physical interpretation of the two terms on the right is the divergent part and rotat-
ing part of ~F respectively. It can be shown that the divergent part is non-rotating,
and the rotating part is non-divergent, i.e. ∇×∇φ =~0 and ∇ · (∇×~A) = 0, or in
the other words, curl of gradient and divergence of curl are both zero.

By extension, if ~F itself is non-divergent, then only the rotating part remains and
it can be written as ∇×~A. Furthermore, if ~F is two-dimensional, for example, a
horizontal flow (u,v,0), then it can be written as ∇× (0,0,ψ), the curl of a vector
aligned in the vertical direction. Expanding the expression, we have

u =−∂ψ

∂y

v =
∂ψ

∂x

where a negative sign is added by custom. ψ in this case is often referred to as the
stream function.

Example 4.1.52 Verify that if we rewrite a horizontal flow using stream func-
tion, then it is non-divergent by itself.

To this end, we only need to show that the divergence is zero. Using stream
function, we have

∂u
∂x

+
∂v
∂y

=−ψyx +ψxy

= 0

where we have used the Clairaut’s Theorem, allowing us to switch the order of
partial derivatives.
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4.2 VECTOR / VECTOR CALCULUS IN ESSC3200

4.2.1 EQUATIONS OF MOTION

Example 4.2.1 Express Pressure Gradient Force using vector notation.

Consider an air parcel with size δxδyδ z, along the x-direction the net force per
unit mass due to pressure difference on the left face A and right face B is

Fx =
1
m
(pA− pB)δyδ z

=
1
m

(
pA− (pA +

∂ p
∂x

δx)
)

δyδ z

where we expand pB using Taylor’s series to the first order, subsequently

Fx =−
1
m

∂ p
∂x

δxδyδ z

=− 1
ρδxδyδ z

∂ p
∂x

δxδyδ z

=− 1
ρ

∂ p
∂x

Illustration of Pressure Gradient Force.

Similarly,

Fy =−
1
ρ

∂ p
∂y

Fz =−
1
ρ

∂ p
∂ z
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Hence

F = Fx î+Fy ĵ+Fzk̂

=− 1
ρ

(
∂ p
∂x

î+
∂ p
∂y

ĵ+
∂ p
∂ z

k̂
)

=− 1
ρ

∇p

Example 4.2.2 Prove that the expression of Coriolis Force is −2~Ω×~v.

The radial component of Coriolis force is found by considering the centrifugal
force for a tangential motion with a velocity U relative to the rotating frame, which
is

Fcen = Rω
2
abs = R(Ω+

U
R
)2 = Ω

2R+2ΩU +
U2

R

ωabs = Ω+ω = Ω+ U
R is the angular velocity observed in the absolute frame. The

terms 2ΩU is the desired radial component of Coriolis Force. The last term is the
curvature term.

Angular velocities of an air parcel in the rotating frame and inertial frame.

For an air parcel which is at rest in the rotating frame and has an absolute velocity
Uabs = RΩ initially, Conservation of Angular Momentum requires that under a
small radial displacement dR and thus a change in the relative tangential velocity
dU , RUabs remains the same, and we have

RUabs = (R+dR)(Ω(R+dR)+dU)

ΩR2 = ΩR2 +2ΩRdR+ΩdR2 +RdU +dRdU

where the new Uabs at the right hand side comes from adding the would-be veloc-
ity at R+dR caused by rotation of the frame to dU .
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Neglecting second-order terms and take the time derivative, we have the tangential
component of Coriolis Force as

2ΩRdR+RdU = 0
dU =−2ΩdR
dU
dt

=−2Ω
dR
dt

=−2ΩV

where V is the radial velocity.

Angular Momentum before and after the displacement.

Here we use the right-handed cylindrical coordinate systems with unit vectors
R̂, θ̂ , ẑ, where R̂ and θ̂ represents the radial and azimuthal direction and ẑ is along
the axis of rotation. The radial velocity and tangential velocity are then expressed
in vectors V R̂ and U θ̂ . Notice the notations for velocities are different from those
usually defined in a local coordinate system. Earth’s angular velocity ~Ω is simply
Ωẑ. Now expand −2~Ω×~v, we have

−2~Ω×~v =−2Ωẑ× (V R̂+U θ̂ +Wẑ)

=−2
R̂ θ̂ ẑ
0 0 Ω

V U W

= 2ΩUR̂−2ΩV θ̂

which is consistent with the above findings. Despite using a cylindrical coordinate
system to prove, the formula holds for any other right-handed system.

Example 4.2.3 Find the expression of Coriolis Force under the local coordinate
system î, ĵ, k̂, which represent zonal, meridional, and zenith direction respectively.
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Ω̂ expressed in terms of ĵ and k̂.

In the local coordinate system, ~Ω = Ωcosϕ ĵ+Ωsinϕ k̂ where ϕ denotes the lat-
itude. With the velocity given by ~v = uî+ v ĵ +wk̂, we have the Coriolis Force
as

−2~Ω×~v =−2
î ĵ k̂
0 Ωcosϕ Ωsinϕ

u v w

= (2Ωsinϕv−2Ωcosϕw)î−2Ωsinϕu ĵ+2Ωcosϕuk̂

If we consider motions on the horizontal plane only, then the expression of Cori-
olis Force is reduced to

FCor = 2Ωsinϕvî−2Ωsinϕu ĵ

= f vî− f u ĵ

=− f k̂×~vH

where f = 2Ωsinϕ is the Coriolis parameter,~vH is the horizontal velocity.

To conclude the three examples above, the equation of horizontal motion is

d ~vH

dt
=− 1

ρ
∇H p− f k̂× ~vH + ~Ff

where ~Ff denotes friction, ∇H = ( ∂

∂x ,
∂

∂y ,0). It is noteworthy that while they are
called forces, their expression actually refers to acceleration, i.e. force per unit
mass. We also convenient leave out the curvature terms.

Example 4.2.4 For a 1500 kg car moving eastwards at a speed of 20 ms−1 at
35 ◦N, find the Coriolis Force acting on it in terms of local coordinates.
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Coriolis Force acting on the car per unit mass is, using a cylindrical coordinate
system as in Example 4.2.2,

−2~Ω×~v =−2Ωẑ×uθ̂

= 2ΩuR̂

= 2(7.292×10−5 s−1)(20ms−1)R̂

= (0.002917ms−2)R̂

Converting to the local coordinate system, we have

R̂ =−sinϕ ĵ+ cosϕ k̂

Hence the required force is

~F = (1500kg)(0.002917ms−2)(−sin(35◦) ĵ+ cos(35◦)k̂)

= (−2.51N) ĵ+(3.58N)k̂

Example 4.2.5 For a pressure field p(x,y) = p0 + p′ sinxcosy, find the flow ve-
locity at (1,1) if the flow is under geostrophic balance, i.e. the pressure gradient
force is balanced by Coriolis Force.

Geostrophic balance implies that the equation of horizontal motion takes the form

d~vH

dt
=− 1

ρ
∇H p− f k̂× ~vH =~0

Taking the cross product k̂× on the equation of motion, we have Alternative: Write
out the equation
of motion in x and
y directions.

− f k̂× (k̂×~vH) =
1
ρ

k̂×∇H p

f~vH =
1
ρ

k̂×∇H p

~vH =
1
f ρ

k̂×∇H p

where we have used the vector identity k̂× (k̂×~v) =−~v if~v has no k-component.

In the question,

∇H p =
∂ p
∂x

î+
∂ p
∂y

ĵ

= p′ cosxcosyî− p′ sinxsiny ĵ
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Hence we have

~vH =
1
f ρ

k̂× (p′ cosxcosyî− p′ sinxsiny ĵ)

=
1
f ρ

(p′ sinxsinyî+ p′ cosxcosy ĵ)

and therefore the flow velocity at (1,1) is simply (0.708 p′
f ρ
,0.292 p′

f ρ
).

4.2.2 CONTINUITY EQUATION

Example 4.2.6 Express the continuity equation, i.e. the conservation of mass,
in vector notation.

Consider a volume element fixed in space with the size δxδyδ z. The mass con-
tained inside the volume is ρδxδyδ z. The change in the mass caused by advection
in x-direction is given by the difference in flux on the left face A and right face B
as follows (

∂m
∂ t

)
x
= ((ρu)A− (ρu)B)δyδ z

= ((ρu)A− ((ρu)A +
∂ (ρu)

∂x
δx))δyδ z

=−∂ (ρu)
∂x

δxδyδ z

where we expand (ρu)B using Taylor’s series to the first order. It is noted that
local derivative instead of material derivative is used for the expression of change
in mass is because the volume element considered is fixed in space.

Illustration of fluxes across the volume boundary.
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Similarly, (
∂m
∂ t

)
y
=−∂ (ρv)

∂y
δxδyδ z(

∂m
∂ t

)
z
=−∂ (ρw)

∂ z
δxδyδ z

Then, we conclude the total change in mass is given by

∂m
∂ t

=−(∂ (ρu)
∂x

+
∂ (ρv)

∂y
+

∂ (ρw)
∂ z

)δxδyδ z

Since mass is just ρδxδyδ z and the size δxδyδ z is fixed, it simplifies to

∂ρ

∂ t
δxδyδ z =−(∂ (ρu)

∂x
+

∂ (ρv)
∂y

+
∂ (ρw)

∂ z
)δxδyδ z

∂ρ

∂ t
=−(∂ (ρu)

∂x
+

∂ (ρv)
∂y

+
∂ (ρw)

∂ z
)

∂ρ

∂ t
=−∇ · (ρ~v)

which means that local change in density is caused by the divergence of the flux
ρ~v.

Under the special case of constant density, the continuity equation is reduced to

∇ ·~v = 0
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0

Example 4.2.7 Given a homogeneous fluid, if u = u0 cosxsinz, v = v0e−y2
, find

the expression for the vertical velocity w.

In a homogeneous fluid, the density is constant, hence from the continuity equa-
tion we have

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0

∂w
∂ z

=−(∂u
∂x

+
∂v
∂y

)

∂w
∂ z

= u0 sinxsinz+2v0ye−y2
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Integration on both sides gives

w =

ˆ
(u0 sinxsinz+2v0ye−y2

)dz

w =−u0 sinxcosz+2v0yze−y2
+w0(x,y)

where w0(x,y) is some function that depends on x, y but does not depend on z.

4.2.3 ADVECTION

Example 4.2.8 At a weather station, the temperature falls at 0.02◦C/km to-
wards the north-west direction. The wind is blowing from the west to the east
with a speed of 5ms−1. Given that the air is being heated by radiation at a rate of
0.5 ◦C/hr, find the local temperature change at the station.

The relation between local derivative, material derivative and advection of tem-
perature is

∂T
∂ t

=
dT
dt
−~v ·∇T

In SI units,~v = (5,0), ∇T = (2cos(45◦)×10−5,−2sin(45◦)×10−5) = (1.414×
10−5,−1.414× 10−5), and for the air dT

dt = 0.5
3600 = 1.389× 10−4. Then the re-

quired answer is

∂T
∂ t

= 1.389×10−4− (5,0) · (1.414×10−5,−1.414×10−5)

= 6.819×10−5 ◦C/s

4.2.4 CIRCULATION

Example 4.2.9 Derive Kelvin’s Circulation Theorem.

Notice the integration is done in an anti-clockwise direction. Starting with Chain
Rule, we have

dC
dt

=
d
dt

˛
C
~v ·d~s =

˛
C

dv
dt
·d~s+

˛
C
~v ·d(d~s

dt
)

=

˛
C

dv
dt
·d~s
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The second term vanishes because˛
C
~v ·d(d~s

dt
) =

˛
C
~v ·d(~v)

=

˛
C

1
2

d(~v ·~v) = 0

since the integral over a scalar around an closed loop is zero. Subsequently, using
the equation of motion for an inviscid fluid, we have

dC
dt

=

˛
C
(− 1

ρ
∇p−~g) ·d~s =

˛
C
− 1

ρ
∇p ·d~s =

˛
C
− 1

ρ
d p

as the gravity ~g is a conservative force. If ρ is a function of p only, which means
that the atmosphere is barotropic, then

dC
dt

= 0

since it can be written as a closed integral of a scalar function solely in p.

Example 4.2.10 By Kelvin’s Circulation Theorem, derive the change in circu-
lation caused by land-sea temperature contrast which leads to land-sea breeze.

Kelvin’s Circulation Theorem is

d
dt

˛
C
~v ·d~s = dC

dt
=−
˛

C

1
ρ

d p =−
˛

C

RT
p

d p

in which we apply the equation of state.

For an afternoon case where the land has a temperature of Tl = 28◦C, the sea
has a temperature of Ts = 25◦C, both assumed to be roughly constant with height
in the boundary layer, the change in circulation along a closed curve across the
coast between p1 = 1000hPa and p2 = 900hPa is then

dC
dt

=−
˛

C

RT
p

d p

=−
˛

C
RT d(ln p)

=−
ˆ p2

p1

RTld(ln p)−
ˆ p1

p2

RTsd(ln p)

=

ˆ p1

p2

R(Tl−Ts)d(ln p)
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Substituting the values gives the answer as

R∆T ∆(ln p) = (287Jkg−1 K−1)(3K)(ln
1000
900

) = 90.72m2 s−2

If the distance between the land and sea is L = 100km = 1×105 m, then the
vertical distance between the two pressure levels is relatively negligible, and hence
we can estimate on average the rate of change in the wind speed perpendicular to
the coast by

dC
dt

=
d
dt

˛
C
~v ·d~s = 2L

dv
dt

and hence

dv
dt

=
90.72m2 s−2

2×105 m
= 4.54×10−4 ms−2

Additionally, the change in circulation can be expressed in a more convenient
form, even when the temperature is dependent on pressure, as

−
ˆ p2

p1

1
ρl

d p−
ˆ p1

p2

1
ρs

d p =−
ˆ z(p2)

z(p1)

1
ρl

∂ pl

∂ zl
dzl−

ˆ z(p1)

z(p2)

1
ρs

∂ ps

∂ zs
dzs

=−
ˆ z(p2)

z(p1)

1
ρl
(−ρlg)dzl−

ˆ z(p1)

z(p2)

1
ρs
(−ρsg)dzs

=

ˆ z(p2)

z(p1)
gdzl−

ˆ z(p2)

z(p1)
gdzs

= g(∆zl−∆zs)

where z is the geopotential height.

Example 4.2.11 Derive Bjerknes’ Circulation Theorem.

Here we use C to denote the relative circulation and Ca the absolute circulation,
similarly~v the relative velocity and~va the absolute velocity. By Kelvin’s Circula-
tion Theorem, we have

dCa

dt
=

d
dt

˛
C
~va ·d~s =

d
dt

˛
C
~v ·d~s+ d

dt

˛
C
(~Ω×~r) ·d~s

where the cross product between the Earth’s angular velocity and the displacement
vector from Earth’s center ~Ω×~r represents the velocity contributed by the Earth’s
rotation. By Stoke’s Theorem, its integral is then˛

C
(~Ω×~r) ·d~s =

¨
R
(∇× (~Ω×~r)) · n̂dA
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Notice that

~Ω×~r = Ωr cosϕθ̂

where ϕ is the latitude and θ̂ is a unit vector in the azimuthal direction under the
spherical coordinates. We use the following formula without proof to compute its
curl

∇× (~Ω×~r) = 1
r2 cosϕ

r cosϕθ̂ rϕ̂ r̂
∂

∂θ

∂

∂ϕ

∂

∂ r
(Ωr cosϕ)(r cosϕ) 0 0

= 2Ωcosϕϕ̂ +2Ωsinϕ r̂ = 2~Ω

For a small area enclosed by the curve, we have

dCa

dt
=

d
dt

˛
C
~v ·d~s+ d

dt

˛
C
(~Ω×~r) ·d~s

−
˛

C

1
ρ

d p =
dC
dt

+
d
dt

¨
R

2~Ω · n̂dA

dC
dt

=−
˛

C

1
ρ

d p− d
dt
((2~Ω · n̂)A)

where we apply Kelvin’s Circulation Theorem on the absolute circulation.

Example 4.2.12 A cylindrical air column in a barotropic atmosphere at 35◦N
has a radius of 100km. If it is initially at rest and contracts such that its radius
becomes 50km, find the mean tangential velocity at the perimeter.

By integrating Bjerknes’ Circulation Theorem, we have

∆C =−(2~Ω · n̂)∆A

the −
¸

C
1
ρ

d p term does not appear due to the barotropic assumption. Substitution
gives

∆C =−2(7.292×10−5 rad/s)(sin(35◦))(π(50000m)2−π(100000m)2)

= 1970966m2 s−1

and because

∆C = ∆

˛
~v ·d~s = 2πrv‖

we have the final answer as

v‖ =
∆C
2πr

=
1970966m2 s−1

2π(50000m)
= 6.274ms−1
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4.2.5 VORTICITY

Example 4.2.13 Find the expression for vorticity, which is a local measure of
rotation and defined as circulation per unit area when the region is infinitesimal,
i.e.

lim
A→0

¸
C~v ·d~s˜

R dA
= lim

A→0

C
A

Similar to circulation, absolute and relative vorticity can be defined. Just like how
we derive Bjerknes’ Circulation Theorem as in Example 4.2.11, we have

lim
A→0

¸
C ~va ·d~s

dA
= lim

A→0

¸
C~v ·d~s

dA
+ lim

A→0

¸
C(
~Ω×~r) ·d~s

dA

lim
A→0

˜
R(∇×~va) · n̂dA

dA
= lim

A→0

˜
R(∇×~v) · n̂dA

dA
+ lim

A→0

˜
R 2~Ω · n̂dA

dA

where the second term on the right again manifests the rotation of the Earth and
we use Stokes’ Theorem. Since A tends to zero, then we conclude for any arbitrary
location

(∇×~va) · n̂ = (∇×~v) · n̂+2~Ω · n̂

in which the absolute vorticity ∇×~va is related to the relative vorticity ∇×~v.
For synoptic scale motion, we only need to consider the vertical component of
vorticity, hence n̂ = k̂, subsequently, we have

η = ζ +2~Ω · k̂ = ζ +2Ωsinϕ = ζ + f

where η and ζ represents the vertical component of absolute vorticity and relative
vorticity, and the Coriolis parameter f is the planetary vorticity. Note that

ζ = (∇×~v) · k̂ = k̂ ·
î ĵ k̂
∂

∂x
∂

∂y
∂

∂ z
u v w

=
∂v
∂x
− ∂u

∂y

Example 4.2.14 Derive the barotropic potential vorticity equation in the shal-
low water system.

By Kelvin’s Circulation Theorem, and the fact that vorticity is just circulation
per unit area, we have

d
dt

Ca =
d
dt
(ηA) =

d
dt
((ζ + f )A) = 0

146



Handbook of Earth Science Chapter 4 - Vector / Vector Calculus

for a fluid column in a barotropic and shallow water environment, where hydro-
static balance holds, so we notice that the horizontal pressure gradient force

∂ p
∂ z

=−ρg

p =−ρgz+ ps(x,y)
∂ p
∂x

=
∂ ps(x,y)

∂x
is constant with height if the fluid has a homogeneous density. By the virtue of
geostrophic balance, then the velocity of the fluid column and the vorticity are
constant with height too, which indicates the fluid column will move as a whole.
Therefore, Ah is also a constant following the flow, and

d
dt
((ζ + f )A) =

d
dt
(
(ζ + f )Ah

h
) =

d
dt
(
ζ + f

h
) = 0

In a shallow water system, we also have from the continuity equation for a homo-
geneous fluid

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0

Integrating with respect to height, we have

w(z) =−
ˆ z

0
(
∂u
∂x

+
∂v
∂y

)dz =−(∂u
∂x

+
∂v
∂y

)z

since the horizontal velocity does not depend on height. At z = h, the vertical
velocity is just the change in height of the fluid column. Thus

dh
dt

=−(∂u
∂x

+
∂v
∂y

)h

This means that the change in height of the air column depends on the height itself
as well as the convergence. Now plugging this equation to the barotropic potential
vorticity equation, we have

d
dt
(
ζ + f

h
) =−(ζ + f )

h2
dh
dt

+
1
h

d
dt
(ζ + f ) = 0

d
dt
(ζ + f ) =

(ζ + f )
h

dh
dt

=
(ζ + f )

h
(−(∂u

∂x
+

∂v
∂y

)h)

=−(ζ + f )(
∂u
∂x

+
∂v
∂y

)

Convergence increases the magnitude of vorticity while divergence reduces it.
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Example 4.2.15 A barotropic air column initially with a zero relative vorticity
at 30◦N extends to a fixed tropopause with a height of 10km. If it moves over a
mountain of 2km tall at 45◦N and thus the column is squashed to 8 km thick, find
the change in its relative vorticity by the barotropic potential vorticity equation.

First, from the barotropic potential vorticity equation, we know that ζ+ f
h con-

serves. Hence

ζ ′+ f ′

h′
=

ζ + f
h

ζ ′+2(7.292×10−5 rad/s)sin(45◦)
8km

=
2(7.292×10−5 rad/s)sin(30◦)

10km
ζ
′ =−4.48×10−5 s−1

4.2.6 BAROTROPIC ROSSBY WAVE

4.3 VECTOR / VECTOR CALCULUS IN ESSC3300

4.4 VECTOR / VECTOR CALCULUS IN ESSC3120

4.4.1 GRAVITY

Gravity Potential Formulation

By the law of universal gravitation, the gravitational attraction , the gravitational
attraction FFF exerted by M on m

FFF =−G
mM
r2 r̂

r̂ is a unit vector in the direction of increase in coordinate r, which is directed
away from the center of reference at the mass M. The negative sign in the equation
indicates that the force FFF acts in the opposite direction, towards the attracting mass
M. The constant G is the constant of universal gravitation.

The law of conservation of energy means that the total energy of a closed
system is constant. Two forms of energy need to be considered here. First is the
potential energy, which an object has by virtue of its position relative to the origin
of force and the second is work done against the action of force during a change
in position.

Total Energy = K.E.+P.E.

Therefore, in general, if a constant force F moves through a small distance dr in
the same direction as the force, the work done is dW = Fdr and the change in

148



Handbook of Earth Science Chapter 4 - Vector / Vector Calculus

potential energy dEp is given

dEp =−dW =−FFFdrrr =−(Fxdx+Fydy+Fzdz)

The expression in brackets is called the scalar product of the vector FFF and drrr.
(Fdrcosθ)

The gravitational potential is the potential energy of a unit mass in a field of
gravitational attraction. Let the potential denoted as Ug

mdUg = Fdr =−maaagggdrrr

−
dUg

dr
r̂ = ∇∇∇Ug = aaaggg

dUg

dr
= G

M
r2

Therefore, the gravitational potential is given by

Ug =−G
M
r

Assuming mi to be the mass of particle at distance ri from P, this the gravitational
acceleration is

ag =−G
m1

r2
1

r̂−G
m2

r2
2

r̂−G
m3

r2
3

r̂− ...

Since vector sum is quite complicated, an alternate approach is to utilize the grav-
itational potential and compute acceleration by differentiation. Thus, the potential
is given by

Ug =−G
m1

r1
−G

m2

r2
−G

m3

r3
− ...

Rather than represented as an assemblage of discrete particles, objects in real
world are represented as continuous mass distribution, therefore we can subdivide
the volume into discrete volume and if the density of each matter in the volume is
known, the mass of the small element can be computed. By integrating over the
volume of the body its gravitational potential can be calculated.

Ug =−G
ˆ ˆ ˆ

ρ(x,y,z)
r(x,y,z)

dxdydz =
ˆ

Gρ(rrr′′′)d3r′

|rrr− rrr′′′|

The integration gives the gravitational potential and acceleration at points inside
and outside a hollow or homogeneous solid sphere. The values outside a sphere
at distance r from its center are the same as if the entire mass E of the sphere were
concentrated at its center.
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Example 4.4.1.1 Consider a solid sphere with radius r, compute the gravita-
tional potential of the sphere from r = ∞ to r = 0 (outside the sphere and inside
the sphere).
TODO

Example 4.4.1.2 What is the gravity anomalies of a sphere at depth? Assume
a sphere of radius R and density contrast∆ρ with its center at depth z below the
surface.

With the mass contrast ∆M =
4
3

πR3
∆ρ and r2 = x2 + z2

∆gz = ∆gsinθ = G
M
r2

z
r

∆gz =
4
3

πG∆ρR3 z
(z2 + x2)(3/2)

=
4
3

πG
(

∆ρR3

z2

)[
1

1+
(x

z

)2

]3/2

Note: The answer shows plenty of parameters and variables and sometimes
they are confusing. It is always essential to distinguish which are parameters
(independent variables), dependent variables and variable. In the above case,
x is the variable. We can understand the gravity abnormaly by it shape. So,
what is the shape of the answer illustrated above? (Hint: try google search: y =
1/(1+xˆ2)ˆ(3/2) )

Example 4.4.1.3 What is the gravity anomalies of a infinite long cylinder along
y axis at depth? Assume a sphere of radius R and density contrast∆ρ with its
center at depth z below the surface. TODO

Example 4.4.1.4 A thin borehole is drilled through the center of the Earth, and
a ball is dropped into the borehole. Assume the Earth to be a homogeneous solid
sphere. Show that the ball will oscillate back and forth from one side of the Earth
to the other. How long does it take to traverse the Earth and reach the other side?

Using the derived gravitational potential in Example 4.4.1, we have

ag =−
dUg

dr
=−4πGρr

3
d2r
dt2 =−4πGρr

3
=−w2

0r

150



Handbook of Earth Science Chapter 4 - Vector / Vector Calculus

Recall the harmonic oscillation formulation and its solution, we have

r(t) = Asin(w0t) with w0 =

√
4πGρ

3

Therefore, the time required to transverse the Earth and reach the other side re-
quires half the period of the oscillation motion, which is

Time required =
π

w0

4.4.2 THERMODYNAMICS

Heat Conduction Equation

Three dimensional heat flow equation is given by

∂T
∂ t

= κ

(
∂ 2T
∂x2 +

∂ 2T
∂y2 +

∂ 2T
∂ z2

)
with κ =

k
ρcP

Heat Conduction Equation with Heat Sources

In addition to heat conduction within the Earth, internal heat source is also a key
factor affecting the themal structure of the earth. Radioactive heat is the main
internal heat source for the Earth as a whole while local heat sources and sinks
also include radioactive heat generation, latent heat, shearing heat and endother-
mic and exothermic chemical reactions.

Therefore combining the heat sources with the Heat Conduction Equation, we
have

∂T
∂ t

= κ

(
∂ 2T
∂x2 +

∂ 2T
∂y2 +

∂ 2T
∂ z2

)
+

A
ρcp

which A is the heat generated/sink per unit volume per unit time.

The above equations can be solved by any set of boundary conditions using the
method of separation of variable.

Separation of variable refers to a method to solve partial differential equa-
tion under a special condition of the partial differential equation is homogeneous
and linear. Homogeneous equation refers to the coefficients in the equation are
constant (or independent to the variables).
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Heat Diffusion Equation with motion

The aforementioned Heat Diffusion Equations assume there is no relative motion
between the small volume of materials and the surroundings. Now considering the
how the temperature of a small volume changes with time with a relative motion
through a region where the temperature varies with depth,

Example 4.4.2.1 1D Heat Diffusion Model TODO

Example 4.4.2.2 Two Layered 1D Heat Diffusion Model TODO

Example 4.4.2.3 Penetration of external heat into the Earth - 1D half space heat
conduction.

Considering the surface temperature of the Earth varies cyclically with angular
frequency w, so that at time t the surface temperature is equal to T0coswt. There-
fore, the study of temperature profile with depth at a certain time is a 1-D half
space heat conduction with a time depend boundary condition.

The surface-temperatue variation T0coswt can be expressed with the aid of com-
plex numbers as the real part of T0eiwt . Let z be the depth of a point below a
surface. Using the separation of variables, the heat conduction equation can be
separated and written as two ordinary equations with the same constant.

Let T (x, t) = θ(t)Z(z) and substitute into heat conduction equation,

∂θ(t)Z(z)
∂ t

= κ
∂ 2θ(t)Z(z)

∂ z2

1
θ(t)

dθ(t)
dt

= κ
1

Z(z)
d2Z(z)

dz2 = iw

Therefore, the time dependence of the temperature is given by

θ(t) = θ0eiwt

The equation for the temperature spatial distribution is

d2Z
dz2 = i

w
κ

Z

Let −n2 = iw/k,
d2Z
dz2 =−n2Z
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which has the solutions

Z = Z0einz and Z = Z1e−inz

where

in =

√
i
w
κ
=

√
w
2κ

(1+ i)

The two possible solutions for depth variation:

Z = Z1einz = Z1e(
√

w/2k)(1+i)z

Z = Z0e−inz = Z0e−(
√

w/2k)(1+i)z

The temperature must decrease with increasing depth z below the surface, so only
the second solution is acceptable. Combining the solutions for θ and Z, we get

T (z, t) = Z0e−z
√

w/2k(1+i)
θ0eiwt

= Z0θ0e−
√

w/2kei(wt−z
√

w/2κ)

Considering the real part of the solution and define penetrating depth d =
√

2κ/w,
the equation reduces to

T (z, t) = T0e−z/dcos
(

wt− z
d

)
The parameter d is called decay depth of the temperature, which the amplitude of
temperature fluctuation at this depth is attenuated to 1/e of its value on the surface.
The solution can also rewritten as

T (z, t) = T0e−z/dcosw(t− td)

where the phase difference or delay time td = z/wd
represents the length of time by which the temperature at depth z lags behind the
surface temperature.

Example 4.4.2.4 Dyke intrusion thermal structure

4.4.3 GEOMAGNETISM

4.5 VECTOR / VECTOR CALCULUS IN ESSC3010

4.6 PROBLEMS

Question 4.1.1 For two vectors~u = (1,2,4) and~v = (5,2,0), find
(a)~u+~v, (b)~u−~v, (c)~u ·~v, (d)~u×~v, (e) the angle between them, (f) the projection
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of~u on~v.

Question 4.1.2 For two vectors~u = (1,4,3) and~v = (−3,5,2), find
(a) ~u + 2~v, (b) 2~u−~v, (c) ~v ·~u, (d) ~v×~u, (e) the angle between them, (f) the
projection of~v on~u.

Question 4.1.3 Prove that if~v = k~u where k is a constant, then their cross prod-
uct equals to zero, by writing out the determinant.

Question 4.1.4 Prove that
(a) (~u+~v) · (~u−~v) = |~u|2−|~v|2,
(b) (~u+~v)× (~u−~v) =−2~u×~v.

Question 4.1.5 Find the volume of the parallelepiped formed by the following
vectors.
(a) (2,1,3), (1,1,4), (2,3,2), (b) (3,1,1), (2,2,1), (0,4,1).

Question 4.1.6 Find the equation of the line with a normal vector of 2î+ 3 ĵ
which passes through the point (1,1). Also, find the equation of the plane with a
normal vector î−2 ĵ+ k̂ which passes through the point (4,3,2).

Question 4.1.7 Find the distance of the point (1,6,3) to the plane 2x+2y+1= 7.

Question 4.1.8 Find the distance of the line x = 1+ t, y = 2− t, z = 3− 2t to
the plane 4x+2y+ z = 11.

Question 4.1.9 Verify that one of the possible parameterization schemes for the
ellipse x2

42 +
y2

52 = 1 is x = 4cos t, y = 5sin t. Hence describe the shape of the curve
parameterized by x = 4cos t, y = 5sin t, z = 2

π
t.

Question 4.1.10 A wheel of radius a is initially at rest. The bottom of the wheel
is marked with a red dot. The wheel is then rolled to the right. Find a parameteri-
zation of the path traced by the red dot. This type of curve is called a cycloid.

Question 4.1.11 The velocity of an object is ~v = (sin t)î+ e−t ĵ + tk̂. Find its
acceleration and displacement.
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Question 4.1.12 Find the arc length of the curve x = e−t cos t,y = e−t sin t,z = t,
from t = 0 to t = 3.

Question 4.1.13 Find the gradient of the function f (x,y) = 2sinxe−y2
. Calcu-

late the gradient at (−π,−1) and (π,1). If a surface is defined as z = f (x,y), find
the normal vector at (0,0,0).

Question 4.1.14 Find a normal vector for the surface z = x2 + y at (1,1,2).

Question 4.1.15 Find the divergence and curl of the following vector fields.
(a) ~F = (x− y)î+(y− z) ĵ+(z− x)k̂,
(b) ~F = e−x2+y2

(x+ y)î+ e−x2+y2
(y− x) ĵ,

(c) ~F = x2 sinye−zî+ x2 cosye−z ĵ+ xyzk̂.

Question 4.1.16 Calculate the Laplacian of f (x,y,z) = sinz
xy , which is ∇2 f .

Question 4.1.17 Given a physical quantity u(x,y, t), if near a location, ∂u
∂ t =−5

per unit time, and its gradient is ∇u =−2î+3 ĵ. If an element moves towards the
north-west at 1 unit length per unit time, find the rate of change in u tracing the
element.

Question 4.1.18 Given a physical quantity u(x,y, t) of an moving object is in-
creasing at a rate of du

dt = 3 per second. It travels towards a bearing of 030◦

(positive y-axis as north and positive x-axis as east) at a speed of 2 unit length per
unit time. Find the local rate of change in u at that moment.

Question 4.1.19 Evaluate
ˆ

f (x,y,z)ds

along the straight line x = t, y = 2t +1, z = 3t +4, from 0 < t < 5, where f (x,y,z)
is (a) xyz, and (b) ex(y+ z).

Question 4.1.20 Evaluate
ˆ

xyezds

along the curve x = cos t, y = sin t, z = t, 0 < t < π .
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Question 4.1.21 Compute ˆ
~F ·d~s

along the curve x = cos t, y = sin t, z = ln t, 1 < t < π , for ~F =−yî+ x ĵ+ zk̂.

Question 4.1.22 Compute ˆ
~F ·d~s

along the curve x = t, y = t2, z = e−t , −1 < t < 1, for ~F = zî+ x ĵ+ yk̂.

Question 4.1.23 Show that

~F = (yez + cosxcosy)î+(xez− sinxsiny) ĵ+ xyezk̂

is conservative. Hence find the value of work done integralˆ
~F ·d~s

(a) starting from (0,0,0) to (π,π,π), (b) along any closed loop.

Question 4.1.24 Integrate
ˆ e

1

ˆ 0

π

sinx
y

dxdy

inside the rectangle x = [0,π] and y = [1,e].

Question 4.1.25 Integrate f (x,y) = x2y inside the circle x2 + y2 < 1.

Question 4.1.26 Integrate f (x,y,z) = xy+ z inside the upper first quadrant of a
dome with radius of 1.

Question 4.1.27 Integrate ¨
xydxdy

in the region bounded by xy = 1, xy = 4, y
x = 4, y

x = 1
4 . First, show that if we

substitute u=
√

xy and v=
√

y
x , then x= u

v , and y= uv. Next, evaluate its Jacobian
and apply coordinate transformation.
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Question 4.1.28 Integrate f (x,y) =
√

x2 + y2 within the circular region x2 +
y2 < 1 by using polar coordinates.

Question 4.1.29 Integrate f (ρ,φ) = ρ sinφ inside a sphere of radius 1 by using
spherical coordinates. 0 < ρ < 1 is the radial distance, 0 < θ < 2π is the azimuth
angle and 0 < φ < π is the zenith angle.

Question 4.1.30 Integrate f (x,y,z) =
√

1
4x2+4y2+1 , on the surface z = x2 + y2,

inside the square region −1 < x < 1 and −1 < y < 1.

Question 4.1.31 For a plane x+2y+4z= 12 that is oriented towards the positive
z-direction, find the flux across its upper first quadrant

¨
R
~F · n̂dS

under ~F = x2 î+ y2 ĵ+ xyk̂. Since it is only the upper first quadrant, the limits of x
and y should be set accordingly.

Question 4.1.32 For a surface z =
√

x2 + y2 which has a shape like a inverted
cone, within the circular region x2 + y2 < 1, find the upward flux

¨
R
~F · n̂dS

across the surface if ~F = xî+ y ĵ+ 1
z ezk̂.

Question 4.1.33 Find the work done integral
˛

C
~F ·d~s

along the closed triangle x = 1, y = 1, x+ y = 2 in clockwise direction with ~F =
xy2 î− x2y ĵ by Green’s Theorem or piecewise integration.

Question 4.1.34 Find the outward flux across the circle x2 + y2 = 1
˛

C
~F · n̂dS

with with ~F = x2 î+ y2 ĵ by Green’s Theorem or direct integration.
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Question 4.1.35 Compute the work done integral of ~F = x2yî + y2z ĵ + z2xk̂
along the circle y2 + z2 = 1, x = 0, along anti-clockwise direction facing in the
positive x-direction.

Question 4.1.36 Find the outward flux across the sphere x2 + y2 + z2 = 1 under
~F = xî+ y ĵ+ e−z2

k̂.

Question 4.1.37 Show that if we write a horizontal flow using stream function,
then the curl of the flow is

∇
2
ψ = ∇ ·∇ψ = ψxx +ψyy

Question 4.1.38 For a velocity field ~v = −ye−t î+ xe−t ĵ, and a scalar field q =

ke−x2
cosy(1− e−t) where k is some constant, find dq

dt of a element moving ac-
cording to the given velocity field when it is present at x = 2, y =−2 with t = 3.

Question 4.1.39 Evaluate

I =
ˆ

∞

0
e−x2

dx

by noticing

I2 =

ˆ
∞

0
e−x2

dx
ˆ

∞

0
e−y2

dy

=

ˆ
∞

0

ˆ
∞

0
e−(x

2+y2)dxdy

since x and y are dummy variables and they are independent of each other. Then,
apply polar coordinate transformation. The integration region is effectively an
semi-infinite circle in the first quadrant, with 0 < r < ∞, 0 < θ < π

2 . This is a
famous result for the Gaussian function.

Question 4.1.40 Evaluate ˛
C

xdy− ydx
mx2 +ny2

along a closed circle x2 + y2 = 1, by noticing

d(y/x) =
xdy− ydx

x2

and determining the new limits.
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Question 4.1.41 By Divergence Theorem, calculate
‹

R
(x4 + y4 + z4)dS

on the spherical surface x2 + y2 + z2 = 1.

Question 4.1.42 Compute the work done along the upper arc of semi-circle x2+

y2 = 4, y > 0, under the vector field ~F = (e(x+1)2
+(y+ 1))î+(ln(y+ 1)− (x+

1)) ĵ, by Green’s / Stokes’ Theorem along an appropriate closed curve.

Question 4.5.1 Show that the “half-width” w of the gravity anomaly over a
sphere and the depth z to the center of the sphere are related by z = 0.652w. (Hint
Example 4.4.2)

Example: low density salt dome ρ =2150 kmm−3 intruding higher-density car-
bonate rocks ρo = 2500kmm−3 results a negative gravity anomaly.
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5.1 INTRODUCTION

Before the writing of this book, the author has organized a linear algebra work-
shop. The lecture material and exercises can be found (not available temporarily)
here. In the following parts, we would cover the areas which were not mentioned
in the workshop.

Cramer’s Rule Cramer’s Rule can be used to find a unique solution for a system
of equations if it exists. Given a system of

a1x+b1y+ c1z = d1

a2x+b2y+ c2z = d2

a3x+b3y+ c3z = d3

where an, bn, cn, dn can be constants or functions. Then the solution is given by

x =

d1 b1 c1
d2 b2 c2
d3 b3 c3

a1 b1 c1
a2 b2 c2
a3 b3 c3

,y =

a1 d1 c1
a2 d2 c2
a3 d3 c3

a1 b1 c1
a2 b2 c2
a3 b3 c3

,z =

a1 b1 d1
a2 b2 d2
a3 b3 d3

a1 b1 c1
a2 b2 c2
a3 b3 c3

where the determinants in numerator is the determinant in denominator with the
first, second and third column replaced by (d1,d2,d3) respectively. For different
amount of variables the procedure is similar.

Example 5.1.1 Solve the following system.

x+2y+3z = 14
x+ y+ z = 6

x−2y+ z = 0

By Cramer’s Rule, we have Alternative:
Use Gaussian
Elimination or
Inverse.

x =

14 2 3
6 1 1
0 −2 1
1 2 3
1 1 1
1 −2 1

=
−6
−6

= 1
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y =

1 14 3
1 6 1
1 0 1
1 2 3
1 1 1
1 −2 1

=
−12
−6

= 2

z =

1 2 14
1 1 6
1 −2 0
1 2 3
1 1 1
1 −2 1

=
−18
−6

= 3

Example 5.1.2 Solve the following system.

(cos t)x+(sin t)y = 0
(cot t)x+(tan t)y = cos t

From Cramer’s Rule, we have

x =

0 sin t
cos t tan t
cos t sin t
cot t tan t

=
−sin t cos t
sin t− cos t

y =

cos t 0
cot t cos t
cos t sin t
cot t tan t

=
cos2 t

sin t− cos t
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